Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj546 Structured version   Visualization version   GIF version

Theorem bnj546 30671
Description: Technical lemma for bnj852 30696. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj546.1 𝐷 = (ω ∖ {∅})
bnj546.2 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
bnj546.3 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
bnj546.4 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
bnj546.5 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
Assertion
Ref Expression
bnj546 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Distinct variable groups:   𝐴,𝑖,𝑝,𝑦   𝑅,𝑖,𝑝,𝑦   𝑓,𝑖,𝑝,𝑦   𝑖,𝑚,𝑝   𝑝,𝜑′
Allowed substitution hints:   𝜏(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑥,𝑓,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑥,𝑓,𝑚,𝑛)   𝜑′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛)   𝜓′(𝑥,𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj546
StepHypRef Expression
1 bnj546.2 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑚𝜑′𝜓′))
2 3simpc 1058 . . . . . . 7 ((𝑓 Fn 𝑚𝜑′𝜓′) → (𝜑′𝜓′))
31, 2sylbi 207 . . . . . 6 (𝜏 → (𝜑′𝜓′))
4 bnj546.3 . . . . . . 7 (𝜎 ↔ (𝑚𝐷𝑛 = suc 𝑚𝑝𝑚))
5 bnj546.1 . . . . . . . . . 10 𝐷 = (ω ∖ {∅})
65bnj923 30543 . . . . . . . . 9 (𝑚𝐷𝑚 ∈ ω)
763ad2ant1 1080 . . . . . . . 8 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → 𝑚 ∈ ω)
8 simp3 1061 . . . . . . . 8 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → 𝑝𝑚)
97, 8jca 554 . . . . . . 7 ((𝑚𝐷𝑛 = suc 𝑚𝑝𝑚) → (𝑚 ∈ ω ∧ 𝑝𝑚))
104, 9sylbi 207 . . . . . 6 (𝜎 → (𝑚 ∈ ω ∧ 𝑝𝑚))
113, 10anim12i 589 . . . . 5 ((𝜏𝜎) → ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)))
12 bnj256 30476 . . . . 5 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ ((𝜑′𝜓′) ∧ (𝑚 ∈ ω ∧ 𝑝𝑚)))
1311, 12sylibr 224 . . . 4 ((𝜏𝜎) → (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
1413anim2i 592 . . 3 ((𝑅 FrSe 𝐴 ∧ (𝜏𝜎)) → (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚)))
15143impb 1257 . 2 ((𝑅 FrSe 𝐴𝜏𝜎) → (𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚)))
16 bnj546.4 . . 3 (𝜑′ ↔ (𝑓‘∅) = pred(𝑥, 𝐴, 𝑅))
17 bnj546.5 . . 3 (𝜓′ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑚 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
18 biid 251 . . 3 ((𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚) ↔ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚))
1916, 17, 18bnj518 30661 . 2 ((𝑅 FrSe 𝐴 ∧ (𝜑′𝜓′𝑚 ∈ ω ∧ 𝑝𝑚)) → ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
20 fvex 6158 . . 3 (𝑓𝑝) ∈ V
21 iunexg 7089 . . 3 (((𝑓𝑝) ∈ V ∧ ∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
2220, 21mpan 705 . 2 (∀𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
2315, 19, 223syl 18 1 ((𝑅 FrSe 𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑝) pred(𝑦, 𝐴, 𝑅) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  wral 2907  Vcvv 3186  cdif 3552  c0 3891  {csn 4148   ciun 4485  suc csuc 5684   Fn wfn 5842  cfv 5847  ωcom 7012  w-bnj17 30456   predc-bnj14 30458   FrSe w-bnj15 30462
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-om 7013  df-bnj17 30457  df-bnj14 30459  df-bnj13 30461  df-bnj15 30463
This theorem is referenced by:  bnj938  30712
  Copyright terms: Public domain W3C validator