Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj705 Structured version   Visualization version   GIF version

Theorem bnj705 29879
Description: -manipulation. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypothesis
Ref Expression
bnj705.1 (𝜑𝜏)
Assertion
Ref Expression
bnj705 ((𝜑𝜓𝜒𝜃) → 𝜏)

Proof of Theorem bnj705
StepHypRef Expression
1 bnj642 29874 . 2 ((𝜑𝜓𝜒𝜃) → 𝜑)
2 bnj705.1 . 2 (𝜑𝜏)
31, 2syl 17 1 ((𝜑𝜓𝜒𝜃) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  w-bnj17 29807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 195  df-an 384  df-3an 1032  df-bnj17 29808
This theorem is referenced by:  bnj769  29888  bnj998  30082  bnj1006  30085
  Copyright terms: Public domain W3C validator