Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj900 Structured version   Visualization version   GIF version

Theorem bnj900 32201
Description: Technical lemma for bnj69 32282. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj900.3 𝐷 = (ω ∖ {∅})
bnj900.4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
Assertion
Ref Expression
bnj900 (𝑓𝐵 → ∅ ∈ dom 𝑓)
Distinct variable group:   𝑓,𝑛
Allowed substitution hints:   𝜑(𝑓,𝑛)   𝜓(𝑓,𝑛)   𝐵(𝑓,𝑛)   𝐷(𝑓,𝑛)

Proof of Theorem bnj900
StepHypRef Expression
1 bnj900.4 . . . . . 6 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
21bnj1436 32111 . . . . 5 (𝑓𝐵 → ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓))
3 simp1 1132 . . . . . 6 ((𝑓 Fn 𝑛𝜑𝜓) → 𝑓 Fn 𝑛)
43reximi 3243 . . . . 5 (∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓) → ∃𝑛𝐷 𝑓 Fn 𝑛)
5 fndm 6454 . . . . . 6 (𝑓 Fn 𝑛 → dom 𝑓 = 𝑛)
65reximi 3243 . . . . 5 (∃𝑛𝐷 𝑓 Fn 𝑛 → ∃𝑛𝐷 dom 𝑓 = 𝑛)
72, 4, 63syl 18 . . . 4 (𝑓𝐵 → ∃𝑛𝐷 dom 𝑓 = 𝑛)
87bnj1196 32066 . . 3 (𝑓𝐵 → ∃𝑛(𝑛𝐷 ∧ dom 𝑓 = 𝑛))
9 nfre1 3306 . . . . . . 7 𝑛𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)
109nfab 2984 . . . . . 6 𝑛{𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
111, 10nfcxfr 2975 . . . . 5 𝑛𝐵
1211nfcri 2971 . . . 4 𝑛 𝑓𝐵
131219.37 2230 . . 3 (∃𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) ↔ (𝑓𝐵 → ∃𝑛(𝑛𝐷 ∧ dom 𝑓 = 𝑛)))
148, 13mpbir 233 . 2 𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛))
15 nfv 1911 . . . 4 𝑛∅ ∈ dom 𝑓
1612, 15nfim 1893 . . 3 𝑛(𝑓𝐵 → ∅ ∈ dom 𝑓)
17 bnj900.3 . . . . . 6 𝐷 = (ω ∖ {∅})
1817bnj529 32012 . . . . 5 (𝑛𝐷 → ∅ ∈ 𝑛)
19 eleq2 2901 . . . . . 6 (dom 𝑓 = 𝑛 → (∅ ∈ dom 𝑓 ↔ ∅ ∈ 𝑛))
2019biimparc 482 . . . . 5 ((∅ ∈ 𝑛 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓)
2118, 20sylan 582 . . . 4 ((𝑛𝐷 ∧ dom 𝑓 = 𝑛) → ∅ ∈ dom 𝑓)
2221imim2i 16 . . 3 ((𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓𝐵 → ∅ ∈ dom 𝑓))
2316, 22exlimi 2213 . 2 (∃𝑛(𝑓𝐵 → (𝑛𝐷 ∧ dom 𝑓 = 𝑛)) → (𝑓𝐵 → ∅ ∈ dom 𝑓))
2414, 23ax-mp 5 1 (𝑓𝐵 → ∅ ∈ dom 𝑓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wex 1776  wcel 2110  {cab 2799  wrex 3139  cdif 3932  c0 4290  {csn 4566  dom cdm 5554   Fn wfn 6349  ωcom 7579
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5202  ax-nul 5209  ax-pr 5329  ax-un 7460
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4838  df-br 5066  df-opab 5128  df-tr 5172  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-fn 6357  df-om 7580
This theorem is referenced by:  bnj906  32202
  Copyright terms: Public domain W3C validator