Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj919 Structured version   Visualization version   GIF version

Theorem bnj919 30598
 Description: First-order logic and set theory. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj919.1 (𝜒 ↔ (𝑛𝐷𝐹 Fn 𝑛𝜑𝜓))
bnj919.2 (𝜑′[𝑃 / 𝑛]𝜑)
bnj919.3 (𝜓′[𝑃 / 𝑛]𝜓)
bnj919.4 (𝜒′[𝑃 / 𝑛]𝜒)
bnj919.5 𝑃 ∈ V
Assertion
Ref Expression
bnj919 (𝜒′ ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′))
Distinct variable groups:   𝐷,𝑛   𝑛,𝐹   𝑃,𝑛
Allowed substitution hints:   𝜑(𝑛)   𝜓(𝑛)   𝜒(𝑛)   𝜑′(𝑛)   𝜓′(𝑛)   𝜒′(𝑛)

Proof of Theorem bnj919
StepHypRef Expression
1 bnj919.4 . 2 (𝜒′[𝑃 / 𝑛]𝜒)
2 bnj919.1 . . 3 (𝜒 ↔ (𝑛𝐷𝐹 Fn 𝑛𝜑𝜓))
32sbcbii 3478 . 2 ([𝑃 / 𝑛]𝜒[𝑃 / 𝑛](𝑛𝐷𝐹 Fn 𝑛𝜑𝜓))
4 bnj919.5 . . 3 𝑃 ∈ V
5 df-bnj17 30513 . . . . 5 ((𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′) ↔ ((𝑃𝐷𝐹 Fn 𝑃𝜑′) ∧ 𝜓′))
6 nfv 1840 . . . . . . 7 𝑛 𝑃𝐷
7 nfv 1840 . . . . . . 7 𝑛 𝐹 Fn 𝑃
8 bnj919.2 . . . . . . . 8 (𝜑′[𝑃 / 𝑛]𝜑)
9 nfsbc1v 3442 . . . . . . . 8 𝑛[𝑃 / 𝑛]𝜑
108, 9nfxfr 1776 . . . . . . 7 𝑛𝜑′
116, 7, 10nf3an 1828 . . . . . 6 𝑛(𝑃𝐷𝐹 Fn 𝑃𝜑′)
12 bnj919.3 . . . . . . 7 (𝜓′[𝑃 / 𝑛]𝜓)
13 nfsbc1v 3442 . . . . . . 7 𝑛[𝑃 / 𝑛]𝜓
1412, 13nfxfr 1776 . . . . . 6 𝑛𝜓′
1511, 14nfan 1825 . . . . 5 𝑛((𝑃𝐷𝐹 Fn 𝑃𝜑′) ∧ 𝜓′)
165, 15nfxfr 1776 . . . 4 𝑛(𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′)
17 eleq1 2686 . . . . . 6 (𝑛 = 𝑃 → (𝑛𝐷𝑃𝐷))
18 fneq2 5948 . . . . . . 7 (𝑛 = 𝑃 → (𝐹 Fn 𝑛𝐹 Fn 𝑃))
19 sbceq1a 3433 . . . . . . . 8 (𝑛 = 𝑃 → (𝜑[𝑃 / 𝑛]𝜑))
2019, 8syl6bbr 278 . . . . . . 7 (𝑛 = 𝑃 → (𝜑𝜑′))
21 sbceq1a 3433 . . . . . . . 8 (𝑛 = 𝑃 → (𝜓[𝑃 / 𝑛]𝜓))
2221, 12syl6bbr 278 . . . . . . 7 (𝑛 = 𝑃 → (𝜓𝜓′))
2318, 20, 223anbi123d 1396 . . . . . 6 (𝑛 = 𝑃 → ((𝐹 Fn 𝑛𝜑𝜓) ↔ (𝐹 Fn 𝑃𝜑′𝜓′)))
2417, 23anbi12d 746 . . . . 5 (𝑛 = 𝑃 → ((𝑛𝐷 ∧ (𝐹 Fn 𝑛𝜑𝜓)) ↔ (𝑃𝐷 ∧ (𝐹 Fn 𝑃𝜑′𝜓′))))
25 bnj252 30529 . . . . 5 ((𝑛𝐷𝐹 Fn 𝑛𝜑𝜓) ↔ (𝑛𝐷 ∧ (𝐹 Fn 𝑛𝜑𝜓)))
26 bnj252 30529 . . . . 5 ((𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′) ↔ (𝑃𝐷 ∧ (𝐹 Fn 𝑃𝜑′𝜓′)))
2724, 25, 263bitr4g 303 . . . 4 (𝑛 = 𝑃 → ((𝑛𝐷𝐹 Fn 𝑛𝜑𝜓) ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′)))
2816, 27sbciegf 3454 . . 3 (𝑃 ∈ V → ([𝑃 / 𝑛](𝑛𝐷𝐹 Fn 𝑛𝜑𝜓) ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′)))
294, 28ax-mp 5 . 2 ([𝑃 / 𝑛](𝑛𝐷𝐹 Fn 𝑛𝜑𝜓) ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′))
301, 3, 293bitri 286 1 (𝜒′ ↔ (𝑃𝐷𝐹 Fn 𝑃𝜑′𝜓′))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987  Vcvv 3190  [wsbc 3422   Fn wfn 5852   ∧ w-bnj17 30512 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-v 3192  df-sbc 3423  df-fn 5860  df-bnj17 30513 This theorem is referenced by:  bnj910  30779  bnj999  30788  bnj907  30796
 Copyright terms: Public domain W3C validator