Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj953 Structured version   Visualization version   GIF version

Theorem bnj953 30714
 Description: Technical lemma for bnj69 30783. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj953.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj953.2 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
Assertion
Ref Expression
bnj953 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))

Proof of Theorem bnj953
StepHypRef Expression
1 bnj312 30482 . . 3 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) ↔ ((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝐺𝑖) = (𝑓𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))
2 bnj251 30472 . . 3 (((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝐺𝑖) = (𝑓𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) ↔ ((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ ((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))))
31, 2bitri 264 . 2 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) ↔ ((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ ((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))))
4 bnj953.1 . . . . . 6 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
54bnj115 30496 . . . . 5 (𝜓 ↔ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
6 sp 2051 . . . . . 6 (∀𝑖((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) → ((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
76impcom 446 . . . . 5 (((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ ∀𝑖((𝑖 ∈ ω ∧ suc 𝑖𝑛) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
85, 7sylan2b 492 . . . 4 (((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
9 bnj953.2 . . . . 5 ((𝐺𝑖) = (𝑓𝑖) → ∀𝑦(𝐺𝑖) = (𝑓𝑖))
109bnj956 30552 . . . 4 ((𝐺𝑖) = (𝑓𝑖) → 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅))
11 eqtr3 2642 . . . 4 (((𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅) ∧ 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
128, 10, 11syl2anr 495 . . 3 (((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓)) → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
13 eqtr 2640 . . 3 (((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑓‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
1412, 13sylan2 491 . 2 (((𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ ((𝐺𝑖) = (𝑓𝑖) ∧ ((𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓))) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
153, 14sylbi 207 1 (((𝐺𝑖) = (𝑓𝑖) ∧ (𝐺‘suc 𝑖) = (𝑓‘suc 𝑖) ∧ (𝑖 ∈ ω ∧ suc 𝑖𝑛) ∧ 𝜓) → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384  ∀wal 1478   = wceq 1480   ∈ wcel 1987  ∀wral 2907  ∪ ciun 4485  suc csuc 5684  ‘cfv 5847  ωcom 7012   ∧ w-bnj17 30456   predc-bnj14 30458 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-ral 2912  df-rex 2913  df-iun 4487  df-bnj17 30457 This theorem is referenced by:  bnj967  30720
 Copyright terms: Public domain W3C validator