![]() |
Mathbox for Jonathan Ben-Naim |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bnj96 | Structured version Visualization version GIF version |
Description: Technical lemma for bnj150 31253. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (Revised by Mario Carneiro, 6-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bnj96.1 | ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
Ref | Expression |
---|---|
bnj96 | ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1𝑜) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bnj93 31240 | . . 3 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → pred(𝑥, 𝐴, 𝑅) ∈ V) | |
2 | dmsnopg 5765 | . . 3 ⊢ ( pred(𝑥, 𝐴, 𝑅) ∈ V → dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} = {∅}) | |
3 | 1, 2 | syl 17 | . 2 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} = {∅}) |
4 | bnj96.1 | . . 3 ⊢ 𝐹 = {〈∅, pred(𝑥, 𝐴, 𝑅)〉} | |
5 | 4 | dmeqi 5480 | . 2 ⊢ dom 𝐹 = dom {〈∅, pred(𝑥, 𝐴, 𝑅)〉} |
6 | df1o2 7741 | . 2 ⊢ 1𝑜 = {∅} | |
7 | 3, 5, 6 | 3eqtr4g 2819 | 1 ⊢ ((𝑅 FrSe 𝐴 ∧ 𝑥 ∈ 𝐴) → dom 𝐹 = 1𝑜) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1632 ∈ wcel 2139 Vcvv 3340 ∅c0 4058 {csn 4321 〈cop 4327 dom cdm 5266 1𝑜c1o 7722 predc-bnj14 31063 FrSe w-bnj15 31067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-dm 5276 df-suc 5890 df-1o 7729 df-bnj13 31066 df-bnj15 31068 |
This theorem is referenced by: bnj150 31253 |
Copyright terms: Public domain | W3C validator |