Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj969 Structured version   Visualization version   GIF version

Theorem bnj969 32213
Description: Technical lemma for bnj69 32277. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj969.1 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
bnj969.2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj969.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj969.10 𝐷 = (ω ∖ {∅})
bnj969.12 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj969.14 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
bnj969.15 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
Assertion
Ref Expression
bnj969 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
Distinct variable groups:   𝐴,𝑖,𝑚,𝑦   𝑅,𝑖,𝑚,𝑦   𝑓,𝑖,𝑚,𝑦   𝑖,𝑛,𝑚
Allowed substitution hints:   𝜑(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜒(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜏(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝜎(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐴(𝑓,𝑛,𝑝)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝐷(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)   𝑅(𝑓,𝑛,𝑝)   𝑋(𝑦,𝑓,𝑖,𝑚,𝑛,𝑝)

Proof of Theorem bnj969
StepHypRef Expression
1 simpl 485 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴𝑋𝐴))
2 bnj667 32018 . . . . . . 7 ((𝑛𝐷𝑓 Fn 𝑛𝜑𝜓) → (𝑓 Fn 𝑛𝜑𝜓))
3 bnj969.3 . . . . . . 7 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
4 bnj969.14 . . . . . . 7 (𝜏 ↔ (𝑓 Fn 𝑛𝜑𝜓))
52, 3, 43imtr4i 294 . . . . . 6 (𝜒𝜏)
653ad2ant1 1129 . . . . 5 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝜏)
76adantl 484 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜏)
83bnj1232 32070 . . . . . . 7 (𝜒𝑛𝐷)
9 vex 3497 . . . . . . . 8 𝑚 ∈ V
109bnj216 31997 . . . . . . 7 (𝑛 = suc 𝑚𝑚𝑛)
11 id 22 . . . . . . 7 (𝑝 = suc 𝑛𝑝 = suc 𝑛)
128, 10, 113anim123i 1147 . . . . . 6 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → (𝑛𝐷𝑚𝑛𝑝 = suc 𝑛))
13 bnj969.15 . . . . . . 7 (𝜎 ↔ (𝑛𝐷𝑝 = suc 𝑛𝑚𝑛))
14 3ancomb 1095 . . . . . . 7 ((𝑛𝐷𝑝 = suc 𝑛𝑚𝑛) ↔ (𝑛𝐷𝑚𝑛𝑝 = suc 𝑛))
1513, 14bitri 277 . . . . . 6 (𝜎 ↔ (𝑛𝐷𝑚𝑛𝑝 = suc 𝑛))
1612, 15sylibr 236 . . . . 5 ((𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛) → 𝜎)
1716adantl 484 . . . 4 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝜎)
181, 7, 17jca32 518 . . 3 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → ((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜏𝜎)))
19 bnj256 31971 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) ↔ ((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜏𝜎)))
2018, 19sylibr 236 . 2 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → (𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎))
21 bnj969.12 . . 3 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
22 bnj969.10 . . . 4 𝐷 = (ω ∖ {∅})
23 bnj969.1 . . . 4 (𝜑 ↔ (𝑓‘∅) = pred(𝑋, 𝐴, 𝑅))
24 bnj969.2 . . . 4 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑛 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2522, 4, 13, 23, 24bnj938 32204 . . 3 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅) ∈ V)
2621, 25eqeltrid 2917 . 2 ((𝑅 FrSe 𝐴𝑋𝐴𝜏𝜎) → 𝐶 ∈ V)
2720, 26syl 17 1 (((𝑅 FrSe 𝐴𝑋𝐴) ∧ (𝜒𝑛 = suc 𝑚𝑝 = suc 𝑛)) → 𝐶 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  Vcvv 3494  cdif 3932  c0 4290  {csn 4560   ciun 4911  suc csuc 6187   Fn wfn 6344  cfv 6349  ωcom 7574  w-bnj17 31951   predc-bnj14 31953   FrSe w-bnj15 31957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-om 7575  df-bnj17 31952  df-bnj14 31954  df-bnj13 31956  df-bnj15 31958
This theorem is referenced by:  bnj910  32215  bnj1006  32227
  Copyright terms: Public domain W3C validator