Mathbox for Jonathan Ben-Naim < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj985 Structured version   Visualization version   GIF version

Theorem bnj985 30784
 Description: Technical lemma for bnj69 30839. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj985.3 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
bnj985.6 (𝜒′[𝑝 / 𝑛]𝜒)
bnj985.9 (𝜒″[𝐺 / 𝑓]𝜒′)
bnj985.11 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
bnj985.13 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj985 (𝐺𝐵 ↔ ∃𝑝𝜒″)
Distinct variable groups:   𝐺,𝑝   𝜒,𝑝   𝑓,𝑝
Allowed substitution hints:   𝜑(𝑓,𝑛,𝑝)   𝜓(𝑓,𝑛,𝑝)   𝜒(𝑓,𝑛)   𝐵(𝑓,𝑛,𝑝)   𝐶(𝑓,𝑛,𝑝)   𝐷(𝑓,𝑛,𝑝)   𝐺(𝑓,𝑛)   𝜒′(𝑓,𝑛,𝑝)   𝜒″(𝑓,𝑛,𝑝)

Proof of Theorem bnj985
StepHypRef Expression
1 bnj985.13 . . . 4 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
21bnj918 30597 . . 3 𝐺 ∈ V
3 bnj985.3 . . . 4 (𝜒 ↔ (𝑛𝐷𝑓 Fn 𝑛𝜑𝜓))
4 bnj985.11 . . . 4 𝐵 = {𝑓 ∣ ∃𝑛𝐷 (𝑓 Fn 𝑛𝜑𝜓)}
53, 4bnj984 30783 . . 3 (𝐺 ∈ V → (𝐺𝐵[𝐺 / 𝑓]𝑛𝜒))
62, 5ax-mp 5 . 2 (𝐺𝐵[𝐺 / 𝑓]𝑛𝜒)
7 sbcex2 3473 . . 3 ([𝐺 / 𝑓]𝑝𝜒′ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′)
8 nfv 1840 . . . . . . 7 𝑝𝜒
98sb8e 2424 . . . . . 6 (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒)
10 sbsbc 3426 . . . . . . 7 ([𝑝 / 𝑛]𝜒[𝑝 / 𝑛]𝜒)
1110exbii 1771 . . . . . 6 (∃𝑝[𝑝 / 𝑛]𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒)
129, 11bitri 264 . . . . 5 (∃𝑛𝜒 ↔ ∃𝑝[𝑝 / 𝑛]𝜒)
13 bnj985.6 . . . . 5 (𝜒′[𝑝 / 𝑛]𝜒)
1412, 13bnj133 30554 . . . 4 (∃𝑛𝜒 ↔ ∃𝑝𝜒′)
1514sbcbii 3478 . . 3 ([𝐺 / 𝑓]𝑛𝜒[𝐺 / 𝑓]𝑝𝜒′)
16 bnj985.9 . . . 4 (𝜒″[𝐺 / 𝑓]𝜒′)
1716exbii 1771 . . 3 (∃𝑝𝜒″ ↔ ∃𝑝[𝐺 / 𝑓]𝜒′)
187, 15, 173bitr4i 292 . 2 ([𝐺 / 𝑓]𝑛𝜒 ↔ ∃𝑝𝜒″)
196, 18bitri 264 1 (𝐺𝐵 ↔ ∃𝑝𝜒″)
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ w3a 1036   = wceq 1480  ∃wex 1701  [wsb 1877   ∈ wcel 1987  {cab 2607  ∃wrex 2909  Vcvv 3190  [wsbc 3422   ∪ cun 3558  {csn 4155  ⟨cop 4161   Fn wfn 5852   ∧ w-bnj17 30512 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877  ax-un 6914 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rex 2914  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-nul 3898  df-sn 4156  df-pr 4158  df-uni 4410  df-bnj17 30513 This theorem is referenced by:  bnj1018  30793
 Copyright terms: Public domain W3C validator