MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpoly1 Structured version   Visualization version   GIF version

Theorem bpoly1 15399
Description: The value of the Bernoulli polynomials at one. (Contributed by Scott Fenton, 16-May-2014.)
Assertion
Ref Expression
bpoly1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))

Proof of Theorem bpoly1
Dummy variable 𝑘 is distinct from all other variables.
StepHypRef Expression
1 1nn0 11907 . . 3 1 ∈ ℕ0
2 bpolyval 15397 . . 3 ((1 ∈ ℕ0𝑋 ∈ ℂ) → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
31, 2mpan 688 . 2 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))))
4 exp1 13429 . . 3 (𝑋 ∈ ℂ → (𝑋↑1) = 𝑋)
5 1m1e0 11703 . . . . . 6 (1 − 1) = 0
65oveq2i 7161 . . . . 5 (0...(1 − 1)) = (0...0)
76sumeq1i 15049 . . . 4 Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))
8 0z 11986 . . . . . 6 0 ∈ ℤ
9 bpoly0 15398 . . . . . . . . . 10 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
109oveq1d 7165 . . . . . . . . 9 (𝑋 ∈ ℂ → ((0 BernPoly 𝑋) / 2) = (1 / 2))
1110oveq2d 7166 . . . . . . . 8 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 · (1 / 2)))
12 halfcn 11846 . . . . . . . . 9 (1 / 2) ∈ ℂ
1312mulid2i 10640 . . . . . . . 8 (1 · (1 / 2)) = (1 / 2)
1411, 13syl6eq 2872 . . . . . . 7 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) = (1 / 2))
1514, 12eqeltrdi 2921 . . . . . 6 (𝑋 ∈ ℂ → (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ)
16 oveq2 7158 . . . . . . . . 9 (𝑘 = 0 → (1C𝑘) = (1C0))
17 bcn0 13664 . . . . . . . . . 10 (1 ∈ ℕ0 → (1C0) = 1)
181, 17ax-mp 5 . . . . . . . . 9 (1C0) = 1
1916, 18syl6eq 2872 . . . . . . . 8 (𝑘 = 0 → (1C𝑘) = 1)
20 oveq1 7157 . . . . . . . . 9 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
21 oveq2 7158 . . . . . . . . . . . 12 (𝑘 = 0 → (1 − 𝑘) = (1 − 0))
22 1m0e1 11752 . . . . . . . . . . . 12 (1 − 0) = 1
2321, 22syl6eq 2872 . . . . . . . . . . 11 (𝑘 = 0 → (1 − 𝑘) = 1)
2423oveq1d 7165 . . . . . . . . . 10 (𝑘 = 0 → ((1 − 𝑘) + 1) = (1 + 1))
25 df-2 11694 . . . . . . . . . 10 2 = (1 + 1)
2624, 25syl6eqr 2874 . . . . . . . . 9 (𝑘 = 0 → ((1 − 𝑘) + 1) = 2)
2720, 26oveq12d 7168 . . . . . . . 8 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)) = ((0 BernPoly 𝑋) / 2))
2819, 27oveq12d 7168 . . . . . . 7 (𝑘 = 0 → ((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
2928fsum1 15096 . . . . . 6 ((0 ∈ ℤ ∧ (1 · ((0 BernPoly 𝑋) / 2)) ∈ ℂ) → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
308, 15, 29sylancr 589 . . . . 5 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 · ((0 BernPoly 𝑋) / 2)))
3130, 14eqtrd 2856 . . . 4 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...0)((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
327, 31syl5eq 2868 . . 3 (𝑋 ∈ ℂ → Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1))) = (1 / 2))
334, 32oveq12d 7168 . 2 (𝑋 ∈ ℂ → ((𝑋↑1) − Σ𝑘 ∈ (0...(1 − 1))((1C𝑘) · ((𝑘 BernPoly 𝑋) / ((1 − 𝑘) + 1)))) = (𝑋 − (1 / 2)))
343, 33eqtrd 2856 1 (𝑋 ∈ ℂ → (1 BernPoly 𝑋) = (𝑋 − (1 / 2)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2110  (class class class)co 7150  cc 10529  0cc0 10531  1c1 10532   + caddc 10534   · cmul 10536  cmin 10864   / cdiv 11291  2c2 11686  0cn0 11891  cz 11975  ...cfz 12886  cexp 13423  Ccbc 13656  Σcsu 15036   BernPoly cbp 15394
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-inf2 9098  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-fal 1546  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-1st 7683  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-sup 8900  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fz 12887  df-fzo 13028  df-seq 13364  df-exp 13424  df-fac 13628  df-bc 13657  df-hash 13685  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-clim 14839  df-sum 15037  df-bpoly 15395
This theorem is referenced by:  bpoly2  15405  bpoly3  15406  bpoly4  15407
  Copyright terms: Public domain W3C validator