MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolydiflem Structured version   Visualization version   GIF version

Theorem bpolydiflem 15411
Description: Lemma for bpolydif 15412. (Contributed by Scott Fenton, 12-Jun-2014.)
Hypotheses
Ref Expression
bpolydiflem.1 (𝜑𝑁 ∈ ℕ)
bpolydiflem.2 (𝜑𝑋 ∈ ℂ)
bpolydiflem.3 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1))))
Assertion
Ref Expression
bpolydiflem (𝜑 → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))
Distinct variable groups:   𝑘,𝑁   𝜑,𝑘   𝑘,𝑋

Proof of Theorem bpolydiflem
Dummy variable 𝑚 is distinct from all other variables.
StepHypRef Expression
1 bpolydiflem.1 . . . . 5 (𝜑𝑁 ∈ ℕ)
21nnnn0d 11958 . . . 4 (𝜑𝑁 ∈ ℕ0)
3 bpolydiflem.2 . . . . 5 (𝜑𝑋 ∈ ℂ)
4 peano2cn 10815 . . . . 5 (𝑋 ∈ ℂ → (𝑋 + 1) ∈ ℂ)
53, 4syl 17 . . . 4 (𝜑 → (𝑋 + 1) ∈ ℂ)
6 bpolyval 15406 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑋 + 1) ∈ ℂ) → (𝑁 BernPoly (𝑋 + 1)) = (((𝑋 + 1)↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))))
72, 5, 6syl2anc 586 . . 3 (𝜑 → (𝑁 BernPoly (𝑋 + 1)) = (((𝑋 + 1)↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))))
8 bpolyval 15406 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
92, 3, 8syl2anc 586 . . 3 (𝜑 → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
107, 9oveq12d 7177 . 2 (𝜑 → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = ((((𝑋 + 1)↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))) − ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))))))
115, 2expcld 13513 . . 3 (𝜑 → ((𝑋 + 1)↑𝑁) ∈ ℂ)
12 fzfid 13344 . . . 4 (𝜑 → (0...(𝑁 − 1)) ∈ Fin)
13 elfzelz 12911 . . . . . . 7 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℤ)
14 bccl 13685 . . . . . . 7 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
152, 13, 14syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝑁C𝑘) ∈ ℕ0)
1615nn0cnd 11960 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝑁C𝑘) ∈ ℂ)
17 elfznn0 13003 . . . . . . 7 (𝑘 ∈ (0...(𝑁 − 1)) → 𝑘 ∈ ℕ0)
18 bpolycl 15409 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ (𝑋 + 1) ∈ ℂ) → (𝑘 BernPoly (𝑋 + 1)) ∈ ℂ)
1917, 5, 18syl2anr 598 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly (𝑋 + 1)) ∈ ℂ)
20 fzssp1 12953 . . . . . . . . . . 11 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
211nncnd 11657 . . . . . . . . . . . . 13 (𝜑𝑁 ∈ ℂ)
22 ax-1cn 10598 . . . . . . . . . . . . 13 1 ∈ ℂ
23 npcan 10898 . . . . . . . . . . . . 13 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
2421, 22, 23sylancl 588 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 1) + 1) = 𝑁)
2524oveq2d 7175 . . . . . . . . . . 11 (𝜑 → (0...((𝑁 − 1) + 1)) = (0...𝑁))
2620, 25sseqtrid 4022 . . . . . . . . . 10 (𝜑 → (0...(𝑁 − 1)) ⊆ (0...𝑁))
2726sselda 3970 . . . . . . . . 9 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁))
28 fznn0sub 12942 . . . . . . . . 9 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
2927, 28syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝑁𝑘) ∈ ℕ0)
30 nn0p1nn 11939 . . . . . . . 8 ((𝑁𝑘) ∈ ℕ0 → ((𝑁𝑘) + 1) ∈ ℕ)
3129, 30syl 17 . . . . . . 7 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁𝑘) + 1) ∈ ℕ)
3231nncnd 11657 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁𝑘) + 1) ∈ ℂ)
3331nnne0d 11690 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁𝑘) + 1) ≠ 0)
3419, 32, 33divcld 11419 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)) ∈ ℂ)
3516, 34mulcld 10664 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) ∈ ℂ)
3612, 35fsumcl 15093 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) ∈ ℂ)
373, 2expcld 13513 . . 3 (𝜑 → (𝑋𝑁) ∈ ℂ)
38 bpolycl 15409 . . . . . . 7 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
3917, 3, 38syl2anr 598 . . . . . 6 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) ∈ ℂ)
4039, 32, 33divcld 11419 . . . . 5 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) ∈ ℂ)
4116, 40mulcld 10664 . . . 4 ((𝜑𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
4212, 41fsumcl 15093 . . 3 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
4311, 36, 37, 42sub4d 11049 . 2 (𝜑 → ((((𝑋 + 1)↑𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))) − ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))))) = ((((𝑋 + 1)↑𝑁) − (𝑋𝑁)) − (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))))))
4426sselda 3970 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑁 − 1))) → 𝑚 ∈ (0...𝑁))
45 bccl2 13686 . . . . . . . . . . 11 (𝑚 ∈ (0...𝑁) → (𝑁C𝑚) ∈ ℕ)
4645adantl 484 . . . . . . . . . 10 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℕ)
4746nncnd 11657 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑁C𝑚) ∈ ℂ)
48 elfznn0 13003 . . . . . . . . . 10 (𝑚 ∈ (0...𝑁) → 𝑚 ∈ ℕ0)
49 expcl 13450 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 𝑚 ∈ ℕ0) → (𝑋𝑚) ∈ ℂ)
503, 48, 49syl2an 597 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...𝑁)) → (𝑋𝑚) ∈ ℂ)
5147, 50mulcld 10664 . . . . . . . 8 ((𝜑𝑚 ∈ (0...𝑁)) → ((𝑁C𝑚) · (𝑋𝑚)) ∈ ℂ)
5244, 51syldan 593 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑚) · (𝑋𝑚)) ∈ ℂ)
5312, 52fsumcl 15093 . . . . . 6 (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋𝑚)) ∈ ℂ)
54 addcom 10829 . . . . . . . . . 10 ((𝑋 ∈ ℂ ∧ 1 ∈ ℂ) → (𝑋 + 1) = (1 + 𝑋))
553, 22, 54sylancl 588 . . . . . . . . 9 (𝜑 → (𝑋 + 1) = (1 + 𝑋))
5655oveq1d 7174 . . . . . . . 8 (𝜑 → ((𝑋 + 1)↑𝑁) = ((1 + 𝑋)↑𝑁))
57 binom1p 15189 . . . . . . . . 9 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → ((1 + 𝑋)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (𝑋𝑚)))
583, 2, 57syl2anc 586 . . . . . . . 8 (𝜑 → ((1 + 𝑋)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (𝑋𝑚)))
5956, 58eqtrd 2859 . . . . . . 7 (𝜑 → ((𝑋 + 1)↑𝑁) = Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (𝑋𝑚)))
60 nn0uz 12283 . . . . . . . . 9 0 = (ℤ‘0)
612, 60eleqtrdi 2926 . . . . . . . 8 (𝜑𝑁 ∈ (ℤ‘0))
62 oveq2 7167 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑁C𝑚) = (𝑁C𝑁))
63 oveq2 7167 . . . . . . . . 9 (𝑚 = 𝑁 → (𝑋𝑚) = (𝑋𝑁))
6462, 63oveq12d 7177 . . . . . . . 8 (𝑚 = 𝑁 → ((𝑁C𝑚) · (𝑋𝑚)) = ((𝑁C𝑁) · (𝑋𝑁)))
6561, 51, 64fsumm1 15109 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (0...𝑁)((𝑁C𝑚) · (𝑋𝑚)) = (Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋𝑚)) + ((𝑁C𝑁) · (𝑋𝑁))))
66 bcnn 13675 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
672, 66syl 17 . . . . . . . . . 10 (𝜑 → (𝑁C𝑁) = 1)
6867oveq1d 7174 . . . . . . . . 9 (𝜑 → ((𝑁C𝑁) · (𝑋𝑁)) = (1 · (𝑋𝑁)))
6937mulid2d 10662 . . . . . . . . 9 (𝜑 → (1 · (𝑋𝑁)) = (𝑋𝑁))
7068, 69eqtrd 2859 . . . . . . . 8 (𝜑 → ((𝑁C𝑁) · (𝑋𝑁)) = (𝑋𝑁))
7170oveq2d 7175 . . . . . . 7 (𝜑 → (Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋𝑚)) + ((𝑁C𝑁) · (𝑋𝑁))) = (Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋𝑚)) + (𝑋𝑁)))
7259, 65, 713eqtrd 2863 . . . . . 6 (𝜑 → ((𝑋 + 1)↑𝑁) = (Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋𝑚)) + (𝑋𝑁)))
7353, 37, 72mvrraddd 11055 . . . . 5 (𝜑 → (((𝑋 + 1)↑𝑁) − (𝑋𝑁)) = Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋𝑚)))
74 nnm1nn0 11941 . . . . . . . 8 (𝑁 ∈ ℕ → (𝑁 − 1) ∈ ℕ0)
751, 74syl 17 . . . . . . 7 (𝜑 → (𝑁 − 1) ∈ ℕ0)
7675, 60eleqtrdi 2926 . . . . . 6 (𝜑 → (𝑁 − 1) ∈ (ℤ‘0))
77 oveq2 7167 . . . . . . 7 (𝑚 = (𝑁 − 1) → (𝑁C𝑚) = (𝑁C(𝑁 − 1)))
78 oveq2 7167 . . . . . . 7 (𝑚 = (𝑁 − 1) → (𝑋𝑚) = (𝑋↑(𝑁 − 1)))
7977, 78oveq12d 7177 . . . . . 6 (𝑚 = (𝑁 − 1) → ((𝑁C𝑚) · (𝑋𝑚)) = ((𝑁C(𝑁 − 1)) · (𝑋↑(𝑁 − 1))))
8076, 52, 79fsumm1 15109 . . . . 5 (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 1))((𝑁C𝑚) · (𝑋𝑚)) = (Σ𝑚 ∈ (0...((𝑁 − 1) − 1))((𝑁C𝑚) · (𝑋𝑚)) + ((𝑁C(𝑁 − 1)) · (𝑋↑(𝑁 − 1)))))
81 1cnd 10639 . . . . . . . . . 10 (𝜑 → 1 ∈ ℂ)
8221, 81, 81subsub4d 11031 . . . . . . . . 9 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − (1 + 1)))
83 df-2 11703 . . . . . . . . . 10 2 = (1 + 1)
8483oveq2i 7170 . . . . . . . . 9 (𝑁 − 2) = (𝑁 − (1 + 1))
8582, 84syl6eqr 2877 . . . . . . . 8 (𝜑 → ((𝑁 − 1) − 1) = (𝑁 − 2))
8685oveq2d 7175 . . . . . . 7 (𝜑 → (0...((𝑁 − 1) − 1)) = (0...(𝑁 − 2)))
8786sumeq1d 15061 . . . . . 6 (𝜑 → Σ𝑚 ∈ (0...((𝑁 − 1) − 1))((𝑁C𝑚) · (𝑋𝑚)) = Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)))
88 bcnm1 13690 . . . . . . . 8 (𝑁 ∈ ℕ0 → (𝑁C(𝑁 − 1)) = 𝑁)
892, 88syl 17 . . . . . . 7 (𝜑 → (𝑁C(𝑁 − 1)) = 𝑁)
9089oveq1d 7174 . . . . . 6 (𝜑 → ((𝑁C(𝑁 − 1)) · (𝑋↑(𝑁 − 1))) = (𝑁 · (𝑋↑(𝑁 − 1))))
9187, 90oveq12d 7177 . . . . 5 (𝜑 → (Σ𝑚 ∈ (0...((𝑁 − 1) − 1))((𝑁C𝑚) · (𝑋𝑚)) + ((𝑁C(𝑁 − 1)) · (𝑋↑(𝑁 − 1)))) = (Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)) + (𝑁 · (𝑋↑(𝑁 − 1)))))
9273, 80, 913eqtrd 2863 . . . 4 (𝜑 → (((𝑋 + 1)↑𝑁) − (𝑋𝑁)) = (Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)) + (𝑁 · (𝑋↑(𝑁 − 1)))))
93 oveq2 7167 . . . . . . . . 9 (𝑘 = 0 → (𝑁C𝑘) = (𝑁C0))
94 oveq1 7166 . . . . . . . . . 10 (𝑘 = 0 → (𝑘 BernPoly (𝑋 + 1)) = (0 BernPoly (𝑋 + 1)))
95 oveq2 7167 . . . . . . . . . . 11 (𝑘 = 0 → (𝑁𝑘) = (𝑁 − 0))
9695oveq1d 7174 . . . . . . . . . 10 (𝑘 = 0 → ((𝑁𝑘) + 1) = ((𝑁 − 0) + 1))
9794, 96oveq12d 7177 . . . . . . . . 9 (𝑘 = 0 → ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)) = ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1)))
9893, 97oveq12d 7177 . . . . . . . 8 (𝑘 = 0 → ((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) = ((𝑁C0) · ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1))))
9976, 35, 98fsum1p 15111 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) = (((𝑁C0) · ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))))
100 bpoly0 15407 . . . . . . . . . . 11 ((𝑋 + 1) ∈ ℂ → (0 BernPoly (𝑋 + 1)) = 1)
1015, 100syl 17 . . . . . . . . . 10 (𝜑 → (0 BernPoly (𝑋 + 1)) = 1)
102101oveq1d 7174 . . . . . . . . 9 (𝜑 → ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1)) = (1 / ((𝑁 − 0) + 1)))
103102oveq2d 7175 . . . . . . . 8 (𝜑 → ((𝑁C0) · ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1))) = ((𝑁C0) · (1 / ((𝑁 − 0) + 1))))
104103oveq1d 7174 . . . . . . 7 (𝜑 → (((𝑁C0) · ((0 BernPoly (𝑋 + 1)) / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))) = (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))))
10599, 104eqtrd 2859 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) = (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))))
106 oveq1 7166 . . . . . . . . . 10 (𝑘 = 0 → (𝑘 BernPoly 𝑋) = (0 BernPoly 𝑋))
107106, 96oveq12d 7177 . . . . . . . . 9 (𝑘 = 0 → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1)))
10893, 107oveq12d 7177 . . . . . . . 8 (𝑘 = 0 → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C0) · ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1))))
10976, 41, 108fsum1p 15111 . . . . . . 7 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (((𝑁C0) · ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
110 bpoly0 15407 . . . . . . . . . . 11 (𝑋 ∈ ℂ → (0 BernPoly 𝑋) = 1)
1113, 110syl 17 . . . . . . . . . 10 (𝜑 → (0 BernPoly 𝑋) = 1)
112111oveq1d 7174 . . . . . . . . 9 (𝜑 → ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1)) = (1 / ((𝑁 − 0) + 1)))
113112oveq2d 7175 . . . . . . . 8 (𝜑 → ((𝑁C0) · ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1))) = ((𝑁C0) · (1 / ((𝑁 − 0) + 1))))
114113oveq1d 7174 . . . . . . 7 (𝜑 → (((𝑁C0) · ((0 BernPoly 𝑋) / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
115109, 114eqtrd 2859 . . . . . 6 (𝜑 → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
116105, 115oveq12d 7177 . . . . 5 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = ((((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))) − (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))))))
117 0z 11995 . . . . . . . . 9 0 ∈ ℤ
118 bccl 13685 . . . . . . . . 9 ((𝑁 ∈ ℕ0 ∧ 0 ∈ ℤ) → (𝑁C0) ∈ ℕ0)
1192, 117, 118sylancl 588 . . . . . . . 8 (𝜑 → (𝑁C0) ∈ ℕ0)
120119nn0cnd 11960 . . . . . . 7 (𝜑 → (𝑁C0) ∈ ℂ)
12121subid1d 10989 . . . . . . . . . . 11 (𝜑 → (𝑁 − 0) = 𝑁)
122121, 1eqeltrd 2916 . . . . . . . . . 10 (𝜑 → (𝑁 − 0) ∈ ℕ)
123122peano2nnd 11658 . . . . . . . . 9 (𝜑 → ((𝑁 − 0) + 1) ∈ ℕ)
124123nnrecred 11691 . . . . . . . 8 (𝜑 → (1 / ((𝑁 − 0) + 1)) ∈ ℝ)
125124recnd 10672 . . . . . . 7 (𝜑 → (1 / ((𝑁 − 0) + 1)) ∈ ℂ)
126120, 125mulcld 10664 . . . . . 6 (𝜑 → ((𝑁C0) · (1 / ((𝑁 − 0) + 1))) ∈ ℂ)
127 fzfid 13344 . . . . . . 7 (𝜑 → ((0 + 1)...(𝑁 − 1)) ∈ Fin)
128 fzp1ss 12961 . . . . . . . . . 10 (0 ∈ ℤ → ((0 + 1)...(𝑁 − 1)) ⊆ (0...(𝑁 − 1)))
129117, 128ax-mp 5 . . . . . . . . 9 ((0 + 1)...(𝑁 − 1)) ⊆ (0...(𝑁 − 1))
130129sseli 3966 . . . . . . . 8 (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) → 𝑘 ∈ (0...(𝑁 − 1)))
131130, 35sylan2 594 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) ∈ ℂ)
132127, 131fsumcl 15093 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) ∈ ℂ)
133130, 41sylan2 594 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
134127, 133fsumcl 15093 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
135126, 132, 134pnpcand 11037 . . . . 5 (𝜑 → ((((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)))) − (((𝑁C0) · (1 / ((𝑁 − 0) + 1))) + Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
136 1zzd 12016 . . . . . . . 8 (𝜑 → 1 ∈ ℤ)
137 0zd 11996 . . . . . . . 8 (𝜑 → 0 ∈ ℤ)
1381nnzd 12089 . . . . . . . . 9 (𝜑𝑁 ∈ ℤ)
139 2z 12017 . . . . . . . . 9 2 ∈ ℤ
140 zsubcl 12027 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 2 ∈ ℤ) → (𝑁 − 2) ∈ ℤ)
141138, 139, 140sylancl 588 . . . . . . . 8 (𝜑 → (𝑁 − 2) ∈ ℤ)
142 fzssp1 12953 . . . . . . . . . . 11 (0...(𝑁 − 2)) ⊆ (0...((𝑁 − 2) + 1))
143 2m1e1 11766 . . . . . . . . . . . . . 14 (2 − 1) = 1
144143oveq2i 7170 . . . . . . . . . . . . 13 (𝑁 − (2 − 1)) = (𝑁 − 1)
145 2cnd 11718 . . . . . . . . . . . . . 14 (𝜑 → 2 ∈ ℂ)
14621, 145, 81subsubd 11028 . . . . . . . . . . . . 13 (𝜑 → (𝑁 − (2 − 1)) = ((𝑁 − 2) + 1))
147144, 146syl5reqr 2874 . . . . . . . . . . . 12 (𝜑 → ((𝑁 − 2) + 1) = (𝑁 − 1))
148147oveq2d 7175 . . . . . . . . . . 11 (𝜑 → (0...((𝑁 − 2) + 1)) = (0...(𝑁 − 1)))
149142, 148sseqtrid 4022 . . . . . . . . . 10 (𝜑 → (0...(𝑁 − 2)) ⊆ (0...(𝑁 − 1)))
150149sselda 3970 . . . . . . . . 9 ((𝜑𝑚 ∈ (0...(𝑁 − 2))) → 𝑚 ∈ (0...(𝑁 − 1)))
151150, 52syldan 593 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑁 − 2))) → ((𝑁C𝑚) · (𝑋𝑚)) ∈ ℂ)
152 oveq2 7167 . . . . . . . . 9 (𝑚 = (𝑘 − 1) → (𝑁C𝑚) = (𝑁C(𝑘 − 1)))
153 oveq2 7167 . . . . . . . . 9 (𝑚 = (𝑘 − 1) → (𝑋𝑚) = (𝑋↑(𝑘 − 1)))
154152, 153oveq12d 7177 . . . . . . . 8 (𝑚 = (𝑘 − 1) → ((𝑁C𝑚) · (𝑋𝑚)) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))))
155136, 137, 141, 151, 154fsumshft 15138 . . . . . . 7 (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)) = Σ𝑘 ∈ ((0 + 1)...((𝑁 − 2) + 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))))
156147oveq2d 7175 . . . . . . . 8 (𝜑 → ((0 + 1)...((𝑁 − 2) + 1)) = ((0 + 1)...(𝑁 − 1)))
157156sumeq1d 15061 . . . . . . 7 (𝜑 → Σ𝑘 ∈ ((0 + 1)...((𝑁 − 2) + 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))))
158155, 157eqtrd 2859 . . . . . 6 (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))))
159 0p1e1 11762 . . . . . . . . . 10 (0 + 1) = 1
160159oveq1i 7169 . . . . . . . . 9 ((0 + 1)...(𝑁 − 1)) = (1...(𝑁 − 1))
161160eleq2i 2907 . . . . . . . 8 (𝑘 ∈ ((0 + 1)...(𝑁 − 1)) ↔ 𝑘 ∈ (1...(𝑁 − 1)))
162 fzssp1 12953 . . . . . . . . . . . . . 14 (1...(𝑁 − 1)) ⊆ (1...((𝑁 − 1) + 1))
16324oveq2d 7175 . . . . . . . . . . . . . 14 (𝜑 → (1...((𝑁 − 1) + 1)) = (1...𝑁))
164162, 163sseqtrid 4022 . . . . . . . . . . . . 13 (𝜑 → (1...(𝑁 − 1)) ⊆ (1...𝑁))
165164sselda 3970 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ (1...𝑁))
166 bcm1k 13678 . . . . . . . . . . . 12 (𝑘 ∈ (1...𝑁) → (𝑁C𝑘) = ((𝑁C(𝑘 − 1)) · ((𝑁 − (𝑘 − 1)) / 𝑘)))
167165, 166syl 17 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C𝑘) = ((𝑁C(𝑘 − 1)) · ((𝑁 − (𝑘 − 1)) / 𝑘)))
1681adantr 483 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ)
169168nncnd 11657 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℂ)
170 elfznn 12939 . . . . . . . . . . . . . . . 16 (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ ℕ)
171170adantl 484 . . . . . . . . . . . . . . 15 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℕ)
172171nncnd 11657 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ∈ ℂ)
173 1cnd 10639 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → 1 ∈ ℂ)
174169, 172, 173subsubd 11028 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑁 − (𝑘 − 1)) = ((𝑁𝑘) + 1))
175174oveq1d 7174 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁 − (𝑘 − 1)) / 𝑘) = (((𝑁𝑘) + 1) / 𝑘))
176175oveq2d 7175 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁C(𝑘 − 1)) · ((𝑁 − (𝑘 − 1)) / 𝑘)) = ((𝑁C(𝑘 − 1)) · (((𝑁𝑘) + 1) / 𝑘)))
177167, 176eqtrd 2859 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C𝑘) = ((𝑁C(𝑘 − 1)) · (((𝑁𝑘) + 1) / 𝑘)))
178 bpolydiflem.3 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) = (𝑘 · (𝑋↑(𝑘 − 1))))
179178oveq1d 7174 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) / ((𝑁𝑘) + 1)) = ((𝑘 · (𝑋↑(𝑘 − 1))) / ((𝑁𝑘) + 1)))
180161, 130sylbir 237 . . . . . . . . . . . . 13 (𝑘 ∈ (1...(𝑁 − 1)) → 𝑘 ∈ (0...(𝑁 − 1)))
181180, 19sylan2 594 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 BernPoly (𝑋 + 1)) ∈ ℂ)
182180, 39sylan2 594 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 BernPoly 𝑋) ∈ ℂ)
183180, 32sylan2 594 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁𝑘) + 1) ∈ ℂ)
184180, 33sylan2 594 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁𝑘) + 1) ≠ 0)
185181, 182, 183, 184divsubdird 11458 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (((𝑘 BernPoly (𝑋 + 1)) − (𝑘 BernPoly 𝑋)) / ((𝑁𝑘) + 1)) = (((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)) − ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))))
1863adantr 483 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → 𝑋 ∈ ℂ)
187 nnm1nn0 11941 . . . . . . . . . . . . . 14 (𝑘 ∈ ℕ → (𝑘 − 1) ∈ ℕ0)
188171, 187syl 17 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 − 1) ∈ ℕ0)
189186, 188expcld 13513 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑋↑(𝑘 − 1)) ∈ ℂ)
190172, 189, 183, 184div23d 11456 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 · (𝑋↑(𝑘 − 1))) / ((𝑁𝑘) + 1)) = ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1))))
191179, 185, 1903eqtr3d 2867 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)) − ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1))))
192177, 191oveq12d 7177 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁C𝑘) · (((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)) − ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (((𝑁C(𝑘 − 1)) · (((𝑁𝑘) + 1) / 𝑘)) · ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1)))))
193180, 16sylan2 594 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C𝑘) ∈ ℂ)
194181, 183, 184divcld 11419 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)) ∈ ℂ)
195182, 183, 184divcld 11419 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) ∈ ℂ)
196193, 194, 195subdid 11099 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁C𝑘) · (((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1)) − ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
197168nnnn0d 11958 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → 𝑁 ∈ ℕ0)
198188nn0zd 12088 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 − 1) ∈ ℤ)
199 bccl 13685 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ0 ∧ (𝑘 − 1) ∈ ℤ) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
200197, 198, 199syl2anc 586 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C(𝑘 − 1)) ∈ ℕ0)
201200nn0cnd 11960 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑁C(𝑘 − 1)) ∈ ℂ)
202171nnne0d 11690 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → 𝑘 ≠ 0)
203183, 172, 202divcld 11419 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (((𝑁𝑘) + 1) / 𝑘) ∈ ℂ)
204172, 183, 184divcld 11419 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (𝑘 / ((𝑁𝑘) + 1)) ∈ ℂ)
205204, 189mulcld 10664 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1))) ∈ ℂ)
206201, 203, 205mulassd 10667 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (((𝑁C(𝑘 − 1)) · (((𝑁𝑘) + 1) / 𝑘)) · ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1)))) = ((𝑁C(𝑘 − 1)) · ((((𝑁𝑘) + 1) / 𝑘) · ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1))))))
207183, 172, 184, 202divcan6d 11438 . . . . . . . . . . . . 13 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((((𝑁𝑘) + 1) / 𝑘) · (𝑘 / ((𝑁𝑘) + 1))) = 1)
208207oveq1d 7174 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (((((𝑁𝑘) + 1) / 𝑘) · (𝑘 / ((𝑁𝑘) + 1))) · (𝑋↑(𝑘 − 1))) = (1 · (𝑋↑(𝑘 − 1))))
209203, 204, 189mulassd 10667 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (((((𝑁𝑘) + 1) / 𝑘) · (𝑘 / ((𝑁𝑘) + 1))) · (𝑋↑(𝑘 − 1))) = ((((𝑁𝑘) + 1) / 𝑘) · ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1)))))
210189mulid2d 10662 . . . . . . . . . . . 12 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (1 · (𝑋↑(𝑘 − 1))) = (𝑋↑(𝑘 − 1)))
211208, 209, 2103eqtr3d 2867 . . . . . . . . . . 11 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((((𝑁𝑘) + 1) / 𝑘) · ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1)))) = (𝑋↑(𝑘 − 1)))
212211oveq2d 7175 . . . . . . . . . 10 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → ((𝑁C(𝑘 − 1)) · ((((𝑁𝑘) + 1) / 𝑘) · ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1))))) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))))
213206, 212eqtrd 2859 . . . . . . . . 9 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (((𝑁C(𝑘 − 1)) · (((𝑁𝑘) + 1) / 𝑘)) · ((𝑘 / ((𝑁𝑘) + 1)) · (𝑋↑(𝑘 − 1)))) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))))
214192, 196, 2133eqtr3d 2867 . . . . . . . 8 ((𝜑𝑘 ∈ (1...(𝑁 − 1))) → (((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))))
215161, 214sylan2b 595 . . . . . . 7 ((𝜑𝑘 ∈ ((0 + 1)...(𝑁 − 1))) → (((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = ((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))))
216215sumeq2dv 15063 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))(((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C(𝑘 − 1)) · (𝑋↑(𝑘 − 1))))
217127, 131, 133fsumsub 15146 . . . . . 6 (𝜑 → Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))(((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
218158, 216, 2173eqtr2rd 2866 . . . . 5 (𝜑 → (Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − Σ𝑘 ∈ ((0 + 1)...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)))
219116, 135, 2183eqtrd 2863 . . . 4 (𝜑 → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)))
22092, 219oveq12d 7177 . . 3 (𝜑 → ((((𝑋 + 1)↑𝑁) − (𝑋𝑁)) − (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))))) = ((Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)) + (𝑁 · (𝑋↑(𝑁 − 1)))) − Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚))))
221 fzfid 13344 . . . . 5 (𝜑 → (0...(𝑁 − 2)) ∈ Fin)
222221, 151fsumcl 15093 . . . 4 (𝜑 → Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)) ∈ ℂ)
2233, 75expcld 13513 . . . . 5 (𝜑 → (𝑋↑(𝑁 − 1)) ∈ ℂ)
22421, 223mulcld 10664 . . . 4 (𝜑 → (𝑁 · (𝑋↑(𝑁 − 1))) ∈ ℂ)
225222, 224pncan2d 11002 . . 3 (𝜑 → ((Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚)) + (𝑁 · (𝑋↑(𝑁 − 1)))) − Σ𝑚 ∈ (0...(𝑁 − 2))((𝑁C𝑚) · (𝑋𝑚))) = (𝑁 · (𝑋↑(𝑁 − 1))))
226220, 225eqtrd 2859 . 2 (𝜑 → ((((𝑋 + 1)↑𝑁) − (𝑋𝑁)) − (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly (𝑋 + 1)) / ((𝑁𝑘) + 1))) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))))) = (𝑁 · (𝑋↑(𝑁 − 1))))
22710, 43, 2263eqtrd 2863 1 (𝜑 → ((𝑁 BernPoly (𝑋 + 1)) − (𝑁 BernPoly 𝑋)) = (𝑁 · (𝑋↑(𝑁 − 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1536  wcel 2113  wne 3019  wss 3939  cfv 6358  (class class class)co 7159  cc 10538  0cc0 10540  1c1 10541   + caddc 10543   · cmul 10545  cmin 10873   / cdiv 11300  cn 11641  2c2 11695  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  cexp 13432  Ccbc 13665  Σcsu 15045   BernPoly cbp 15403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-inf2 9107  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617  ax-pre-sup 10618
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-fal 1549  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-om 7584  df-1st 7692  df-2nd 7693  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-oadd 8109  df-er 8292  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-div 11301  df-nn 11642  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-fac 13637  df-bc 13666  df-hash 13694  df-cj 14461  df-re 14462  df-im 14463  df-sqrt 14597  df-abs 14598  df-clim 14848  df-sum 15046  df-bpoly 15404
This theorem is referenced by:  bpolydif  15412
  Copyright terms: Public domain W3C validator