MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bpolysum Structured version   Visualization version   GIF version

Theorem bpolysum 14720
Description: A sum for Bernoulli polynomials. (Contributed by Scott Fenton, 16-May-2014.) (Proof shortened by Mario Carneiro, 22-May-2014.)
Assertion
Ref Expression
bpolysum ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Distinct variable groups:   𝑘,𝑁   𝑘,𝑋

Proof of Theorem bpolysum
StepHypRef Expression
1 simpl 473 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℕ0)
2 nn0uz 11674 . . . 4 0 = (ℤ‘0)
31, 2syl6eleq 2708 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ (ℤ‘0))
4 elfzelz 12292 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℤ)
5 bccl 13057 . . . . . 6 ((𝑁 ∈ ℕ0𝑘 ∈ ℤ) → (𝑁C𝑘) ∈ ℕ0)
61, 4, 5syl2an 494 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℕ0)
76nn0cnd 11305 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁C𝑘) ∈ ℂ)
8 elfznn0 12382 . . . . . 6 (𝑘 ∈ (0...𝑁) → 𝑘 ∈ ℕ0)
9 simpr 477 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑋 ∈ ℂ)
10 bpolycl 14719 . . . . . 6 ((𝑘 ∈ ℕ0𝑋 ∈ ℂ) → (𝑘 BernPoly 𝑋) ∈ ℂ)
118, 9, 10syl2anr 495 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑘 BernPoly 𝑋) ∈ ℂ)
12 fznn0sub 12323 . . . . . . . 8 (𝑘 ∈ (0...𝑁) → (𝑁𝑘) ∈ ℕ0)
1312adantl 482 . . . . . . 7 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → (𝑁𝑘) ∈ ℕ0)
14 nn0p1nn 11284 . . . . . . 7 ((𝑁𝑘) ∈ ℕ0 → ((𝑁𝑘) + 1) ∈ ℕ)
1513, 14syl 17 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℕ)
1615nncnd 10988 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ∈ ℂ)
1715nnne0d 11017 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁𝑘) + 1) ≠ 0)
1811, 16, 17divcld 10753 . . . 4 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) ∈ ℂ)
197, 18mulcld 10012 . . 3 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...𝑁)) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
20 oveq2 6618 . . . 4 (𝑘 = 𝑁 → (𝑁C𝑘) = (𝑁C𝑁))
21 oveq1 6617 . . . . 5 (𝑘 = 𝑁 → (𝑘 BernPoly 𝑋) = (𝑁 BernPoly 𝑋))
22 oveq2 6618 . . . . . 6 (𝑘 = 𝑁 → (𝑁𝑘) = (𝑁𝑁))
2322oveq1d 6625 . . . . 5 (𝑘 = 𝑁 → ((𝑁𝑘) + 1) = ((𝑁𝑁) + 1))
2421, 23oveq12d 6628 . . . 4 (𝑘 = 𝑁 → ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)) = ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))
2520, 24oveq12d 6628 . . 3 (𝑘 = 𝑁 → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))))
263, 19, 25fsumm1 14421 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))))
27 bcnn 13047 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁C𝑁) = 1)
2827adantr 481 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁C𝑁) = 1)
29 nn0cn 11254 . . . . . . . . . . 11 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
3029adantr 481 . . . . . . . . . 10 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → 𝑁 ∈ ℂ)
3130subidd 10332 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁𝑁) = 0)
3231oveq1d 6625 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = (0 + 1))
33 0p1e1 11084 . . . . . . . 8 (0 + 1) = 1
3432, 33syl6eq 2671 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁𝑁) + 1) = 1)
3534oveq2d 6626 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = ((𝑁 BernPoly 𝑋) / 1))
36 bpolycl 14719 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) ∈ ℂ)
3736div1d 10745 . . . . . 6 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / 1) = (𝑁 BernPoly 𝑋))
3835, 37eqtrd 2655 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)) = (𝑁 BernPoly 𝑋))
3928, 38oveq12d 6628 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (1 · (𝑁 BernPoly 𝑋)))
4036mulid2d 10010 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (1 · (𝑁 BernPoly 𝑋)) = (𝑁 BernPoly 𝑋))
4139, 40eqtrd 2655 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1))) = (𝑁 BernPoly 𝑋))
4241oveq2d 6626 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + ((𝑁C𝑁) · ((𝑁 BernPoly 𝑋) / ((𝑁𝑁) + 1)))) = (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)))
43 bpolyval 14716 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑁 BernPoly 𝑋) = ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))))
4443eqcomd 2627 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋))
45 expcl 12826 . . . . 5 ((𝑋 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝑋𝑁) ∈ ℂ)
4645ancoms 469 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (𝑋𝑁) ∈ ℂ)
47 fzfid 12720 . . . . 5 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ∈ Fin)
48 fzssp1 12334 . . . . . . . 8 (0...(𝑁 − 1)) ⊆ (0...((𝑁 − 1) + 1))
49 ax-1cn 9946 . . . . . . . . . 10 1 ∈ ℂ
50 npcan 10242 . . . . . . . . . 10 ((𝑁 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5130, 49, 50sylancl 693 . . . . . . . . 9 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → ((𝑁 − 1) + 1) = 𝑁)
5251oveq2d 6626 . . . . . . . 8 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...((𝑁 − 1) + 1)) = (0...𝑁))
5348, 52syl5sseq 3637 . . . . . . 7 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (0...(𝑁 − 1)) ⊆ (0...𝑁))
5453sselda 3587 . . . . . 6 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → 𝑘 ∈ (0...𝑁))
5554, 19syldan 487 . . . . 5 (((𝑁 ∈ ℕ0𝑋 ∈ ℂ) ∧ 𝑘 ∈ (0...(𝑁 − 1))) → ((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5647, 55fsumcl 14405 . . . 4 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) ∈ ℂ)
5746, 56, 36subaddd 10362 . . 3 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (((𝑋𝑁) − Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1)))) = (𝑁 BernPoly 𝑋) ↔ (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁)))
5844, 57mpbid 222 . 2 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → (Σ𝑘 ∈ (0...(𝑁 − 1))((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) + (𝑁 BernPoly 𝑋)) = (𝑋𝑁))
5926, 42, 583eqtrd 2659 1 ((𝑁 ∈ ℕ0𝑋 ∈ ℂ) → Σ𝑘 ∈ (0...𝑁)((𝑁C𝑘) · ((𝑘 BernPoly 𝑋) / ((𝑁𝑘) + 1))) = (𝑋𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cfv 5852  (class class class)co 6610  cc 9886  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893  cmin 10218   / cdiv 10636  cn 10972  0cn0 11244  cz 11329  cuz 11639  ...cfz 12276  cexp 12808  Ccbc 13037  Σcsu 14358   BernPoly cbp 14713
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-bpoly 14714
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator