MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem4 Structured version   Visualization version   GIF version

Theorem bposlem4 25865
Description: Lemma for bpos 25871. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bpos.1 (𝜑𝑁 ∈ (ℤ‘5))
bpos.2 (𝜑 → ¬ ∃𝑝 ∈ ℙ (𝑁 < 𝑝𝑝 ≤ (2 · 𝑁)))
bpos.3 𝐹 = (𝑛 ∈ ℕ ↦ if(𝑛 ∈ ℙ, (𝑛↑(𝑛 pCnt ((2 · 𝑁)C𝑁))), 1))
bpos.4 𝐾 = (⌊‘((2 · 𝑁) / 3))
bpos.5 𝑀 = (⌊‘(√‘(2 · 𝑁)))
Assertion
Ref Expression
bposlem4 (𝜑𝑀 ∈ (3...𝐾))
Distinct variable groups:   𝐹,𝑝   𝑛,𝑝,𝐾   𝑀,𝑝   𝑛,𝑁,𝑝   𝜑,𝑛,𝑝
Allowed substitution hints:   𝐹(𝑛)   𝑀(𝑛)

Proof of Theorem bposlem4
StepHypRef Expression
1 2nn 11713 . . . . . . . 8 2 ∈ ℕ
2 5nn 11726 . . . . . . . . 9 5 ∈ ℕ
3 bpos.1 . . . . . . . . 9 (𝜑𝑁 ∈ (ℤ‘5))
4 eluznn 12321 . . . . . . . . 9 ((5 ∈ ℕ ∧ 𝑁 ∈ (ℤ‘5)) → 𝑁 ∈ ℕ)
52, 3, 4sylancr 589 . . . . . . . 8 (𝜑𝑁 ∈ ℕ)
6 nnmulcl 11664 . . . . . . . 8 ((2 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (2 · 𝑁) ∈ ℕ)
71, 5, 6sylancr 589 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℕ)
87nnred 11655 . . . . . 6 (𝜑 → (2 · 𝑁) ∈ ℝ)
97nnrpd 12432 . . . . . . 7 (𝜑 → (2 · 𝑁) ∈ ℝ+)
109rpge0d 12438 . . . . . 6 (𝜑 → 0 ≤ (2 · 𝑁))
118, 10resqrtcld 14779 . . . . 5 (𝜑 → (√‘(2 · 𝑁)) ∈ ℝ)
1211flcld 13171 . . . 4 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ ℤ)
13 sqrt9 14635 . . . . . 6 (√‘9) = 3
14 9re 11739 . . . . . . . . 9 9 ∈ ℝ
1514a1i 11 . . . . . . . 8 (𝜑 → 9 ∈ ℝ)
16 10re 12120 . . . . . . . . 9 10 ∈ ℝ
1716a1i 11 . . . . . . . 8 (𝜑10 ∈ ℝ)
18 lep1 11483 . . . . . . . . . . 11 (9 ∈ ℝ → 9 ≤ (9 + 1))
1914, 18ax-mp 5 . . . . . . . . . 10 9 ≤ (9 + 1)
20 9p1e10 12103 . . . . . . . . . 10 (9 + 1) = 10
2119, 20breqtri 5093 . . . . . . . . 9 9 ≤ 10
2221a1i 11 . . . . . . . 8 (𝜑 → 9 ≤ 10)
23 5cn 11728 . . . . . . . . . 10 5 ∈ ℂ
24 2cn 11715 . . . . . . . . . 10 2 ∈ ℂ
25 5t2e10 12201 . . . . . . . . . 10 (5 · 2) = 10
2623, 24, 25mulcomli 10652 . . . . . . . . 9 (2 · 5) = 10
27 eluzle 12259 . . . . . . . . . . 11 (𝑁 ∈ (ℤ‘5) → 5 ≤ 𝑁)
283, 27syl 17 . . . . . . . . . 10 (𝜑 → 5 ≤ 𝑁)
295nnred 11655 . . . . . . . . . . 11 (𝜑𝑁 ∈ ℝ)
30 5re 11727 . . . . . . . . . . . 12 5 ∈ ℝ
31 2re 11714 . . . . . . . . . . . . 13 2 ∈ ℝ
32 2pos 11743 . . . . . . . . . . . . 13 0 < 2
3331, 32pm3.2i 473 . . . . . . . . . . . 12 (2 ∈ ℝ ∧ 0 < 2)
34 lemul2 11495 . . . . . . . . . . . 12 ((5 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3530, 33, 34mp3an13 1448 . . . . . . . . . . 11 (𝑁 ∈ ℝ → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3629, 35syl 17 . . . . . . . . . 10 (𝜑 → (5 ≤ 𝑁 ↔ (2 · 5) ≤ (2 · 𝑁)))
3728, 36mpbid 234 . . . . . . . . 9 (𝜑 → (2 · 5) ≤ (2 · 𝑁))
3826, 37eqbrtrrid 5104 . . . . . . . 8 (𝜑10 ≤ (2 · 𝑁))
3915, 17, 8, 22, 38letrd 10799 . . . . . . 7 (𝜑 → 9 ≤ (2 · 𝑁))
40 0re 10645 . . . . . . . . . 10 0 ∈ ℝ
41 9pos 11753 . . . . . . . . . 10 0 < 9
4240, 14, 41ltleii 10765 . . . . . . . . 9 0 ≤ 9
4314, 42pm3.2i 473 . . . . . . . 8 (9 ∈ ℝ ∧ 0 ≤ 9)
449rprege0d 12441 . . . . . . . 8 (𝜑 → ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)))
45 sqrtle 14622 . . . . . . . 8 (((9 ∈ ℝ ∧ 0 ≤ 9) ∧ ((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁))) → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4643, 44, 45sylancr 589 . . . . . . 7 (𝜑 → (9 ≤ (2 · 𝑁) ↔ (√‘9) ≤ (√‘(2 · 𝑁))))
4739, 46mpbid 234 . . . . . 6 (𝜑 → (√‘9) ≤ (√‘(2 · 𝑁)))
4813, 47eqbrtrrid 5104 . . . . 5 (𝜑 → 3 ≤ (√‘(2 · 𝑁)))
49 3z 12018 . . . . . 6 3 ∈ ℤ
50 flge 13178 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ 3 ∈ ℤ) → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5111, 49, 50sylancl 588 . . . . 5 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5248, 51mpbid 234 . . . 4 (𝜑 → 3 ≤ (⌊‘(√‘(2 · 𝑁))))
5349eluz1i 12254 . . . 4 ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ ℤ ∧ 3 ≤ (⌊‘(√‘(2 · 𝑁)))))
5412, 52, 53sylanbrc 585 . . 3 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3))
55 3nn 11719 . . . . 5 3 ∈ ℕ
56 nndivre 11681 . . . . 5 (((2 · 𝑁) ∈ ℝ ∧ 3 ∈ ℕ) → ((2 · 𝑁) / 3) ∈ ℝ)
578, 55, 56sylancl 588 . . . 4 (𝜑 → ((2 · 𝑁) / 3) ∈ ℝ)
58 3re 11720 . . . . . . . . 9 3 ∈ ℝ
5958a1i 11 . . . . . . . 8 (𝜑 → 3 ∈ ℝ)
609sqrtgt0d 14774 . . . . . . . 8 (𝜑 → 0 < (√‘(2 · 𝑁)))
61 lemul2 11495 . . . . . . . 8 ((3 ∈ ℝ ∧ (√‘(2 · 𝑁)) ∈ ℝ ∧ ((√‘(2 · 𝑁)) ∈ ℝ ∧ 0 < (√‘(2 · 𝑁)))) → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6259, 11, 11, 60, 61syl112anc 1370 . . . . . . 7 (𝜑 → (3 ≤ (√‘(2 · 𝑁)) ↔ ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁)))))
6348, 62mpbid 234 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))))
64 remsqsqrt 14618 . . . . . . 7 (((2 · 𝑁) ∈ ℝ ∧ 0 ≤ (2 · 𝑁)) → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
658, 10, 64syl2anc 586 . . . . . 6 (𝜑 → ((√‘(2 · 𝑁)) · (√‘(2 · 𝑁))) = (2 · 𝑁))
6663, 65breqtrd 5094 . . . . 5 (𝜑 → ((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁))
67 3pos 11745 . . . . . . . 8 0 < 3
6858, 67pm3.2i 473 . . . . . . 7 (3 ∈ ℝ ∧ 0 < 3)
6968a1i 11 . . . . . 6 (𝜑 → (3 ∈ ℝ ∧ 0 < 3))
70 lemuldiv 11522 . . . . . 6 (((√‘(2 · 𝑁)) ∈ ℝ ∧ (2 · 𝑁) ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7111, 8, 69, 70syl3anc 1367 . . . . 5 (𝜑 → (((√‘(2 · 𝑁)) · 3) ≤ (2 · 𝑁) ↔ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)))
7266, 71mpbid 234 . . . 4 (𝜑 → (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3))
73 flword2 13186 . . . 4 (((√‘(2 · 𝑁)) ∈ ℝ ∧ ((2 · 𝑁) / 3) ∈ ℝ ∧ (√‘(2 · 𝑁)) ≤ ((2 · 𝑁) / 3)) → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
7411, 57, 72, 73syl3anc 1367 . . 3 (𝜑 → (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁)))))
75 elfzuzb 12905 . . 3 ((⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))) ↔ ((⌊‘(√‘(2 · 𝑁))) ∈ (ℤ‘3) ∧ (⌊‘((2 · 𝑁) / 3)) ∈ (ℤ‘(⌊‘(√‘(2 · 𝑁))))))
7654, 74, 75sylanbrc 585 . 2 (𝜑 → (⌊‘(√‘(2 · 𝑁))) ∈ (3...(⌊‘((2 · 𝑁) / 3))))
77 bpos.5 . 2 𝑀 = (⌊‘(√‘(2 · 𝑁)))
78 bpos.4 . . 3 𝐾 = (⌊‘((2 · 𝑁) / 3))
7978oveq2i 7169 . 2 (3...𝐾) = (3...(⌊‘((2 · 𝑁) / 3)))
8076, 77, 793eltr4g 2932 1 (𝜑𝑀 ∈ (3...𝐾))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wrex 3141  ifcif 4469   class class class wbr 5068  cmpt 5148  cfv 6357  (class class class)co 7158  cr 10538  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544   < clt 10677  cle 10678   / cdiv 11299  cn 11640  2c2 11695  3c3 11696  5c5 11698  9c9 11702  cz 11984  cdc 12101  cuz 12246  ...cfz 12895  cfl 13163  cexp 13432  Ccbc 13665  csqrt 14594  cprime 16017   pCnt cpc 16175
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-rp 12393  df-fz 12896  df-fl 13165  df-seq 13373  df-exp 13433  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596
This theorem is referenced by:  bposlem6  25867
  Copyright terms: Public domain W3C validator