Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  bposlem7 Structured version   Visualization version   GIF version

Theorem bposlem7 24932
 Description: Lemma for bpos 24935. The function 𝐹 is decreasing. (Contributed by Mario Carneiro, 13-Mar-2014.)
Hypotheses
Ref Expression
bposlem7.1 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
bposlem7.2 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
bposlem7.3 (𝜑𝐴 ∈ ℕ)
bposlem7.4 (𝜑𝐵 ∈ ℕ)
bposlem7.5 (𝜑 → (e↑2) ≤ 𝐴)
bposlem7.6 (𝜑 → (e↑2) ≤ 𝐵)
Assertion
Ref Expression
bposlem7 (𝜑 → (𝐴 < 𝐵 → (𝐹𝐵) < (𝐹𝐴)))
Distinct variable groups:   𝐴,𝑛   𝐵,𝑛   𝑛,𝐺   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑥,𝑛)   𝐹(𝑥,𝑛)   𝐺(𝑥)

Proof of Theorem bposlem7
StepHypRef Expression
1 bposlem7.4 . . . . . . . . . . . . 13 (𝜑𝐵 ∈ ℕ)
21nnrpd 11822 . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ+)
32rpsqrtcld 14092 . . . . . . . . . . 11 (𝜑 → (√‘𝐵) ∈ ℝ+)
4 fveq2 6153 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐵) → (log‘𝑥) = (log‘(√‘𝐵)))
5 id 22 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐵) → 𝑥 = (√‘𝐵))
64, 5oveq12d 6628 . . . . . . . . . . . 12 (𝑥 = (√‘𝐵) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝐵)) / (√‘𝐵)))
7 bposlem7.2 . . . . . . . . . . . 12 𝐺 = (𝑥 ∈ ℝ+ ↦ ((log‘𝑥) / 𝑥))
8 ovex 6638 . . . . . . . . . . . 12 ((log‘(√‘𝐵)) / (√‘𝐵)) ∈ V
96, 7, 8fvmpt 6244 . . . . . . . . . . 11 ((√‘𝐵) ∈ ℝ+ → (𝐺‘(√‘𝐵)) = ((log‘(√‘𝐵)) / (√‘𝐵)))
103, 9syl 17 . . . . . . . . . 10 (𝜑 → (𝐺‘(√‘𝐵)) = ((log‘(√‘𝐵)) / (√‘𝐵)))
11 bposlem7.3 . . . . . . . . . . . . 13 (𝜑𝐴 ∈ ℕ)
1211nnrpd 11822 . . . . . . . . . . . 12 (𝜑𝐴 ∈ ℝ+)
1312rpsqrtcld 14092 . . . . . . . . . . 11 (𝜑 → (√‘𝐴) ∈ ℝ+)
14 fveq2 6153 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐴) → (log‘𝑥) = (log‘(√‘𝐴)))
15 id 22 . . . . . . . . . . . . 13 (𝑥 = (√‘𝐴) → 𝑥 = (√‘𝐴))
1614, 15oveq12d 6628 . . . . . . . . . . . 12 (𝑥 = (√‘𝐴) → ((log‘𝑥) / 𝑥) = ((log‘(√‘𝐴)) / (√‘𝐴)))
17 ovex 6638 . . . . . . . . . . . 12 ((log‘(√‘𝐴)) / (√‘𝐴)) ∈ V
1816, 7, 17fvmpt 6244 . . . . . . . . . . 11 ((√‘𝐴) ∈ ℝ+ → (𝐺‘(√‘𝐴)) = ((log‘(√‘𝐴)) / (√‘𝐴)))
1913, 18syl 17 . . . . . . . . . 10 (𝜑 → (𝐺‘(√‘𝐴)) = ((log‘(√‘𝐴)) / (√‘𝐴)))
2010, 19breq12d 4631 . . . . . . . . 9 (𝜑 → ((𝐺‘(√‘𝐵)) < (𝐺‘(√‘𝐴)) ↔ ((log‘(√‘𝐵)) / (√‘𝐵)) < ((log‘(√‘𝐴)) / (√‘𝐴))))
2113rpred 11824 . . . . . . . . . 10 (𝜑 → (√‘𝐴) ∈ ℝ)
22 bposlem7.5 . . . . . . . . . . . 12 (𝜑 → (e↑2) ≤ 𝐴)
2312rprege0d 11831 . . . . . . . . . . . . 13 (𝜑 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
24 resqrtth 13938 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) → ((√‘𝐴)↑2) = 𝐴)
2523, 24syl 17 . . . . . . . . . . . 12 (𝜑 → ((√‘𝐴)↑2) = 𝐴)
2622, 25breqtrrd 4646 . . . . . . . . . . 11 (𝜑 → (e↑2) ≤ ((√‘𝐴)↑2))
2713rpge0d 11828 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (√‘𝐴))
28 ere 14755 . . . . . . . . . . . . 13 e ∈ ℝ
29 0re 9992 . . . . . . . . . . . . . 14 0 ∈ ℝ
30 epos 14871 . . . . . . . . . . . . . 14 0 < e
3129, 28, 30ltleii 10112 . . . . . . . . . . . . 13 0 ≤ e
32 le2sq 12886 . . . . . . . . . . . . 13 (((e ∈ ℝ ∧ 0 ≤ e) ∧ ((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴))) → (e ≤ (√‘𝐴) ↔ (e↑2) ≤ ((√‘𝐴)↑2)))
3328, 31, 32mpanl12 717 . . . . . . . . . . . 12 (((√‘𝐴) ∈ ℝ ∧ 0 ≤ (√‘𝐴)) → (e ≤ (√‘𝐴) ↔ (e↑2) ≤ ((√‘𝐴)↑2)))
3421, 27, 33syl2anc 692 . . . . . . . . . . 11 (𝜑 → (e ≤ (√‘𝐴) ↔ (e↑2) ≤ ((√‘𝐴)↑2)))
3526, 34mpbird 247 . . . . . . . . . 10 (𝜑 → e ≤ (√‘𝐴))
363rpred 11824 . . . . . . . . . 10 (𝜑 → (√‘𝐵) ∈ ℝ)
37 bposlem7.6 . . . . . . . . . . . 12 (𝜑 → (e↑2) ≤ 𝐵)
382rprege0d 11831 . . . . . . . . . . . . 13 (𝜑 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
39 resqrtth 13938 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ ∧ 0 ≤ 𝐵) → ((√‘𝐵)↑2) = 𝐵)
4038, 39syl 17 . . . . . . . . . . . 12 (𝜑 → ((√‘𝐵)↑2) = 𝐵)
4137, 40breqtrrd 4646 . . . . . . . . . . 11 (𝜑 → (e↑2) ≤ ((√‘𝐵)↑2))
423rpge0d 11828 . . . . . . . . . . . 12 (𝜑 → 0 ≤ (√‘𝐵))
43 le2sq 12886 . . . . . . . . . . . . 13 (((e ∈ ℝ ∧ 0 ≤ e) ∧ ((√‘𝐵) ∈ ℝ ∧ 0 ≤ (√‘𝐵))) → (e ≤ (√‘𝐵) ↔ (e↑2) ≤ ((√‘𝐵)↑2)))
4428, 31, 43mpanl12 717 . . . . . . . . . . . 12 (((√‘𝐵) ∈ ℝ ∧ 0 ≤ (√‘𝐵)) → (e ≤ (√‘𝐵) ↔ (e↑2) ≤ ((√‘𝐵)↑2)))
4536, 42, 44syl2anc 692 . . . . . . . . . . 11 (𝜑 → (e ≤ (√‘𝐵) ↔ (e↑2) ≤ ((√‘𝐵)↑2)))
4641, 45mpbird 247 . . . . . . . . . 10 (𝜑 → e ≤ (√‘𝐵))
47 logdivlt 24288 . . . . . . . . . 10 ((((√‘𝐴) ∈ ℝ ∧ e ≤ (√‘𝐴)) ∧ ((√‘𝐵) ∈ ℝ ∧ e ≤ (√‘𝐵))) → ((√‘𝐴) < (√‘𝐵) ↔ ((log‘(√‘𝐵)) / (√‘𝐵)) < ((log‘(√‘𝐴)) / (√‘𝐴))))
4821, 35, 36, 46, 47syl22anc 1324 . . . . . . . . 9 (𝜑 → ((√‘𝐴) < (√‘𝐵) ↔ ((log‘(√‘𝐵)) / (√‘𝐵)) < ((log‘(√‘𝐴)) / (√‘𝐴))))
4921, 36, 27, 42lt2sqd 12991 . . . . . . . . 9 (𝜑 → ((√‘𝐴) < (√‘𝐵) ↔ ((√‘𝐴)↑2) < ((√‘𝐵)↑2)))
5020, 48, 493bitr2rd 297 . . . . . . . 8 (𝜑 → (((√‘𝐴)↑2) < ((√‘𝐵)↑2) ↔ (𝐺‘(√‘𝐵)) < (𝐺‘(√‘𝐴))))
5125, 40breq12d 4631 . . . . . . . 8 (𝜑 → (((√‘𝐴)↑2) < ((√‘𝐵)↑2) ↔ 𝐴 < 𝐵))
52 relogcl 24243 . . . . . . . . . . . . 13 (𝑥 ∈ ℝ+ → (log‘𝑥) ∈ ℝ)
53 rerpdivcl 11813 . . . . . . . . . . . . 13 (((log‘𝑥) ∈ ℝ ∧ 𝑥 ∈ ℝ+) → ((log‘𝑥) / 𝑥) ∈ ℝ)
5452, 53mpancom 702 . . . . . . . . . . . 12 (𝑥 ∈ ℝ+ → ((log‘𝑥) / 𝑥) ∈ ℝ)
557, 54fmpti 6344 . . . . . . . . . . 11 𝐺:ℝ+⟶ℝ
5655ffvelrni 6319 . . . . . . . . . 10 ((√‘𝐵) ∈ ℝ+ → (𝐺‘(√‘𝐵)) ∈ ℝ)
573, 56syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(√‘𝐵)) ∈ ℝ)
5855ffvelrni 6319 . . . . . . . . . 10 ((√‘𝐴) ∈ ℝ+ → (𝐺‘(√‘𝐴)) ∈ ℝ)
5913, 58syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(√‘𝐴)) ∈ ℝ)
60 2rp 11789 . . . . . . . . . 10 2 ∈ ℝ+
61 rpsqrtcl 13947 . . . . . . . . . 10 (2 ∈ ℝ+ → (√‘2) ∈ ℝ+)
6260, 61mp1i 13 . . . . . . . . 9 (𝜑 → (√‘2) ∈ ℝ+)
6357, 59, 62ltmul2d 11866 . . . . . . . 8 (𝜑 → ((𝐺‘(√‘𝐵)) < (𝐺‘(√‘𝐴)) ↔ ((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴)))))
6450, 51, 633bitr3d 298 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴)))))
6564biimpd 219 . . . . . 6 (𝜑 → (𝐴 < 𝐵 → ((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴)))))
6611nnred 10987 . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
671nnred 10987 . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
68 2re 11042 . . . . . . . . . . . 12 2 ∈ ℝ
69 2pos 11064 . . . . . . . . . . . 12 0 < 2
7068, 69pm3.2i 471 . . . . . . . . . . 11 (2 ∈ ℝ ∧ 0 < 2)
7170a1i 11 . . . . . . . . . 10 (𝜑 → (2 ∈ ℝ ∧ 0 < 2))
72 ltdiv1 10839 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < 𝐵 ↔ (𝐴 / 2) < (𝐵 / 2)))
7366, 67, 71, 72syl3anc 1323 . . . . . . . . 9 (𝜑 → (𝐴 < 𝐵 ↔ (𝐴 / 2) < (𝐵 / 2)))
7412rphalfcld 11836 . . . . . . . . . . 11 (𝜑 → (𝐴 / 2) ∈ ℝ+)
7574rpred 11824 . . . . . . . . . 10 (𝜑 → (𝐴 / 2) ∈ ℝ)
7628, 68remulcli 10006 . . . . . . . . . . . . 13 (e · 2) ∈ ℝ
7776a1i 11 . . . . . . . . . . . 12 (𝜑 → (e · 2) ∈ ℝ)
7828resqcli 12897 . . . . . . . . . . . . 13 (e↑2) ∈ ℝ
7978a1i 11 . . . . . . . . . . . 12 (𝜑 → (e↑2) ∈ ℝ)
80 egt2lt3 14870 . . . . . . . . . . . . . . . . 17 (2 < e ∧ e < 3)
8180simpli 474 . . . . . . . . . . . . . . . 16 2 < e
8268, 28, 81ltleii 10112 . . . . . . . . . . . . . . 15 2 ≤ e
8368, 28, 28lemul2i 10899 . . . . . . . . . . . . . . . 16 (0 < e → (2 ≤ e ↔ (e · 2) ≤ (e · e)))
8430, 83ax-mp 5 . . . . . . . . . . . . . . 15 (2 ≤ e ↔ (e · 2) ≤ (e · e))
8582, 84mpbi 220 . . . . . . . . . . . . . 14 (e · 2) ≤ (e · e)
8628recni 10004 . . . . . . . . . . . . . . 15 e ∈ ℂ
8786sqvali 12891 . . . . . . . . . . . . . 14 (e↑2) = (e · e)
8885, 87breqtrri 4645 . . . . . . . . . . . . 13 (e · 2) ≤ (e↑2)
8988a1i 11 . . . . . . . . . . . 12 (𝜑 → (e · 2) ≤ (e↑2))
9077, 79, 66, 89, 22letrd 10146 . . . . . . . . . . 11 (𝜑 → (e · 2) ≤ 𝐴)
91 lemuldiv 10855 . . . . . . . . . . . . 13 ((e ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((e · 2) ≤ 𝐴 ↔ e ≤ (𝐴 / 2)))
9228, 70, 91mp3an13 1412 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → ((e · 2) ≤ 𝐴 ↔ e ≤ (𝐴 / 2)))
9366, 92syl 17 . . . . . . . . . . 11 (𝜑 → ((e · 2) ≤ 𝐴 ↔ e ≤ (𝐴 / 2)))
9490, 93mpbid 222 . . . . . . . . . 10 (𝜑 → e ≤ (𝐴 / 2))
952rphalfcld 11836 . . . . . . . . . . 11 (𝜑 → (𝐵 / 2) ∈ ℝ+)
9695rpred 11824 . . . . . . . . . 10 (𝜑 → (𝐵 / 2) ∈ ℝ)
9777, 79, 67, 89, 37letrd 10146 . . . . . . . . . . 11 (𝜑 → (e · 2) ≤ 𝐵)
98 lemuldiv 10855 . . . . . . . . . . . . 13 ((e ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → ((e · 2) ≤ 𝐵 ↔ e ≤ (𝐵 / 2)))
9928, 70, 98mp3an13 1412 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → ((e · 2) ≤ 𝐵 ↔ e ≤ (𝐵 / 2)))
10067, 99syl 17 . . . . . . . . . . 11 (𝜑 → ((e · 2) ≤ 𝐵 ↔ e ≤ (𝐵 / 2)))
10197, 100mpbid 222 . . . . . . . . . 10 (𝜑 → e ≤ (𝐵 / 2))
102 logdivlt 24288 . . . . . . . . . 10 ((((𝐴 / 2) ∈ ℝ ∧ e ≤ (𝐴 / 2)) ∧ ((𝐵 / 2) ∈ ℝ ∧ e ≤ (𝐵 / 2))) → ((𝐴 / 2) < (𝐵 / 2) ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
10375, 94, 96, 101, 102syl22anc 1324 . . . . . . . . 9 (𝜑 → ((𝐴 / 2) < (𝐵 / 2) ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
10473, 103bitrd 268 . . . . . . . 8 (𝜑 → (𝐴 < 𝐵 ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
105 fveq2 6153 . . . . . . . . . . . 12 (𝑥 = (𝐵 / 2) → (log‘𝑥) = (log‘(𝐵 / 2)))
106 id 22 . . . . . . . . . . . 12 (𝑥 = (𝐵 / 2) → 𝑥 = (𝐵 / 2))
107105, 106oveq12d 6628 . . . . . . . . . . 11 (𝑥 = (𝐵 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝐵 / 2)) / (𝐵 / 2)))
108 ovex 6638 . . . . . . . . . . 11 ((log‘(𝐵 / 2)) / (𝐵 / 2)) ∈ V
109107, 7, 108fvmpt 6244 . . . . . . . . . 10 ((𝐵 / 2) ∈ ℝ+ → (𝐺‘(𝐵 / 2)) = ((log‘(𝐵 / 2)) / (𝐵 / 2)))
11095, 109syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐵 / 2)) = ((log‘(𝐵 / 2)) / (𝐵 / 2)))
111 fveq2 6153 . . . . . . . . . . . 12 (𝑥 = (𝐴 / 2) → (log‘𝑥) = (log‘(𝐴 / 2)))
112 id 22 . . . . . . . . . . . 12 (𝑥 = (𝐴 / 2) → 𝑥 = (𝐴 / 2))
113111, 112oveq12d 6628 . . . . . . . . . . 11 (𝑥 = (𝐴 / 2) → ((log‘𝑥) / 𝑥) = ((log‘(𝐴 / 2)) / (𝐴 / 2)))
114 ovex 6638 . . . . . . . . . . 11 ((log‘(𝐴 / 2)) / (𝐴 / 2)) ∈ V
115113, 7, 114fvmpt 6244 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ+ → (𝐺‘(𝐴 / 2)) = ((log‘(𝐴 / 2)) / (𝐴 / 2)))
11674, 115syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐴 / 2)) = ((log‘(𝐴 / 2)) / (𝐴 / 2)))
117110, 116breq12d 4631 . . . . . . . 8 (𝜑 → ((𝐺‘(𝐵 / 2)) < (𝐺‘(𝐴 / 2)) ↔ ((log‘(𝐵 / 2)) / (𝐵 / 2)) < ((log‘(𝐴 / 2)) / (𝐴 / 2))))
11855ffvelrni 6319 . . . . . . . . . 10 ((𝐵 / 2) ∈ ℝ+ → (𝐺‘(𝐵 / 2)) ∈ ℝ)
11995, 118syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐵 / 2)) ∈ ℝ)
12055ffvelrni 6319 . . . . . . . . . 10 ((𝐴 / 2) ∈ ℝ+ → (𝐺‘(𝐴 / 2)) ∈ ℝ)
12174, 120syl 17 . . . . . . . . 9 (𝜑 → (𝐺‘(𝐴 / 2)) ∈ ℝ)
122 9nn 11144 . . . . . . . . . . 11 9 ∈ ℕ
123 4nn 11139 . . . . . . . . . . 11 4 ∈ ℕ
124 nnrp 11794 . . . . . . . . . . . 12 (9 ∈ ℕ → 9 ∈ ℝ+)
125 nnrp 11794 . . . . . . . . . . . 12 (4 ∈ ℕ → 4 ∈ ℝ+)
126 rpdivcl 11808 . . . . . . . . . . . 12 ((9 ∈ ℝ+ ∧ 4 ∈ ℝ+) → (9 / 4) ∈ ℝ+)
127124, 125, 126syl2an 494 . . . . . . . . . . 11 ((9 ∈ ℕ ∧ 4 ∈ ℕ) → (9 / 4) ∈ ℝ+)
128122, 123, 127mp2an 707 . . . . . . . . . 10 (9 / 4) ∈ ℝ+
129128a1i 11 . . . . . . . . 9 (𝜑 → (9 / 4) ∈ ℝ+)
130119, 121, 129ltmul2d 11866 . . . . . . . 8 (𝜑 → ((𝐺‘(𝐵 / 2)) < (𝐺‘(𝐴 / 2)) ↔ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))))
131104, 117, 1303bitr2d 296 . . . . . . 7 (𝜑 → (𝐴 < 𝐵 ↔ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))))
132131biimpd 219 . . . . . 6 (𝜑 → (𝐴 < 𝐵 → ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))))
13365, 132jcad 555 . . . . 5 (𝜑 → (𝐴 < 𝐵 → (((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴))) ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2))))))
134 sqrt2re 14915 . . . . . . 7 (√‘2) ∈ ℝ
135 remulcl 9973 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝐵)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝐵))) ∈ ℝ)
136134, 57, 135sylancr 694 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝐵))) ∈ ℝ)
137 9re 11059 . . . . . . . 8 9 ∈ ℝ
138 4re 11049 . . . . . . . 8 4 ∈ ℝ
139 4ne0 11069 . . . . . . . 8 4 ≠ 0
140137, 138, 139redivcli 10744 . . . . . . 7 (9 / 4) ∈ ℝ
141 remulcl 9973 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝐵 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝐵 / 2))) ∈ ℝ)
142140, 119, 141sylancr 694 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝐵 / 2))) ∈ ℝ)
143 remulcl 9973 . . . . . . 7 (((√‘2) ∈ ℝ ∧ (𝐺‘(√‘𝐴)) ∈ ℝ) → ((√‘2) · (𝐺‘(√‘𝐴))) ∈ ℝ)
144134, 59, 143sylancr 694 . . . . . 6 (𝜑 → ((√‘2) · (𝐺‘(√‘𝐴))) ∈ ℝ)
145 remulcl 9973 . . . . . . 7 (((9 / 4) ∈ ℝ ∧ (𝐺‘(𝐴 / 2)) ∈ ℝ) → ((9 / 4) · (𝐺‘(𝐴 / 2))) ∈ ℝ)
146140, 121, 145sylancr 694 . . . . . 6 (𝜑 → ((9 / 4) · (𝐺‘(𝐴 / 2))) ∈ ℝ)
147 lt2add 10465 . . . . . 6 (((((√‘2) · (𝐺‘(√‘𝐵))) ∈ ℝ ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) ∈ ℝ) ∧ (((√‘2) · (𝐺‘(√‘𝐴))) ∈ ℝ ∧ ((9 / 4) · (𝐺‘(𝐴 / 2))) ∈ ℝ)) → ((((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴))) ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))) → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2))))))
148136, 142, 144, 146, 147syl22anc 1324 . . . . 5 (𝜑 → ((((√‘2) · (𝐺‘(√‘𝐵))) < ((√‘2) · (𝐺‘(√‘𝐴))) ∧ ((9 / 4) · (𝐺‘(𝐵 / 2))) < ((9 / 4) · (𝐺‘(𝐴 / 2)))) → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2))))))
149133, 148syld 47 . . . 4 (𝜑 → (𝐴 < 𝐵 → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2))))))
150 ltmul2 10826 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (2 ∈ ℝ ∧ 0 < 2)) → (𝐴 < 𝐵 ↔ (2 · 𝐴) < (2 · 𝐵)))
15166, 67, 71, 150syl3anc 1323 . . . . . 6 (𝜑 → (𝐴 < 𝐵 ↔ (2 · 𝐴) < (2 · 𝐵)))
152 rpmulcl 11807 . . . . . . . . . 10 ((2 ∈ ℝ+𝐴 ∈ ℝ+) → (2 · 𝐴) ∈ ℝ+)
15360, 12, 152sylancr 694 . . . . . . . . 9 (𝜑 → (2 · 𝐴) ∈ ℝ+)
154153rpsqrtcld 14092 . . . . . . . 8 (𝜑 → (√‘(2 · 𝐴)) ∈ ℝ+)
155 rpmulcl 11807 . . . . . . . . . 10 ((2 ∈ ℝ+𝐵 ∈ ℝ+) → (2 · 𝐵) ∈ ℝ+)
15660, 2, 155sylancr 694 . . . . . . . . 9 (𝜑 → (2 · 𝐵) ∈ ℝ+)
157156rpsqrtcld 14092 . . . . . . . 8 (𝜑 → (√‘(2 · 𝐵)) ∈ ℝ+)
158 rprege0 11799 . . . . . . . . 9 ((√‘(2 · 𝐴)) ∈ ℝ+ → ((√‘(2 · 𝐴)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐴))))
159 rprege0 11799 . . . . . . . . 9 ((√‘(2 · 𝐵)) ∈ ℝ+ → ((√‘(2 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐵))))
160 lt2sq 12885 . . . . . . . . 9 ((((√‘(2 · 𝐴)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐴))) ∧ ((√‘(2 · 𝐵)) ∈ ℝ ∧ 0 ≤ (√‘(2 · 𝐵)))) → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2)))
161158, 159, 160syl2an 494 . . . . . . . 8 (((√‘(2 · 𝐴)) ∈ ℝ+ ∧ (√‘(2 · 𝐵)) ∈ ℝ+) → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2)))
162154, 157, 161syl2anc 692 . . . . . . 7 (𝜑 → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2)))
163153rprege0d 11831 . . . . . . . . 9 (𝜑 → ((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)))
164 resqrtth 13938 . . . . . . . . 9 (((2 · 𝐴) ∈ ℝ ∧ 0 ≤ (2 · 𝐴)) → ((√‘(2 · 𝐴))↑2) = (2 · 𝐴))
165163, 164syl 17 . . . . . . . 8 (𝜑 → ((√‘(2 · 𝐴))↑2) = (2 · 𝐴))
166156rprege0d 11831 . . . . . . . . 9 (𝜑 → ((2 · 𝐵) ∈ ℝ ∧ 0 ≤ (2 · 𝐵)))
167 resqrtth 13938 . . . . . . . . 9 (((2 · 𝐵) ∈ ℝ ∧ 0 ≤ (2 · 𝐵)) → ((√‘(2 · 𝐵))↑2) = (2 · 𝐵))
168166, 167syl 17 . . . . . . . 8 (𝜑 → ((√‘(2 · 𝐵))↑2) = (2 · 𝐵))
169165, 168breq12d 4631 . . . . . . 7 (𝜑 → (((√‘(2 · 𝐴))↑2) < ((√‘(2 · 𝐵))↑2) ↔ (2 · 𝐴) < (2 · 𝐵)))
170162, 169bitr2d 269 . . . . . 6 (𝜑 → ((2 · 𝐴) < (2 · 𝐵) ↔ (√‘(2 · 𝐴)) < (√‘(2 · 𝐵))))
171 1lt2 11146 . . . . . . . . 9 1 < 2
172 rplogcl 24271 . . . . . . . . 9 ((2 ∈ ℝ ∧ 1 < 2) → (log‘2) ∈ ℝ+)
17368, 171, 172mp2an 707 . . . . . . . 8 (log‘2) ∈ ℝ+
174173a1i 11 . . . . . . 7 (𝜑 → (log‘2) ∈ ℝ+)
175154, 157, 174ltdiv2d 11847 . . . . . 6 (𝜑 → ((√‘(2 · 𝐴)) < (√‘(2 · 𝐵)) ↔ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))))
176151, 170, 1753bitrd 294 . . . . 5 (𝜑 → (𝐴 < 𝐵 ↔ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))))
177176biimpd 219 . . . 4 (𝜑 → (𝐴 < 𝐵 → ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))))
178149, 177jcad 555 . . 3 (𝜑 → (𝐴 < 𝐵 → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∧ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴))))))
179136, 142readdcld 10021 . . . 4 (𝜑 → (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) ∈ ℝ)
180 rpre 11791 . . . . . 6 ((log‘2) ∈ ℝ+ → (log‘2) ∈ ℝ)
181173, 180ax-mp 5 . . . . 5 (log‘2) ∈ ℝ
182 rerpdivcl 11813 . . . . 5 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝐵)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝐵))) ∈ ℝ)
183181, 157, 182sylancr 694 . . . 4 (𝜑 → ((log‘2) / (√‘(2 · 𝐵))) ∈ ℝ)
184144, 146readdcld 10021 . . . 4 (𝜑 → (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∈ ℝ)
185 rerpdivcl 11813 . . . . 5 (((log‘2) ∈ ℝ ∧ (√‘(2 · 𝐴)) ∈ ℝ+) → ((log‘2) / (√‘(2 · 𝐴))) ∈ ℝ)
186181, 154, 185sylancr 694 . . . 4 (𝜑 → ((log‘2) / (√‘(2 · 𝐴))) ∈ ℝ)
187 lt2add 10465 . . . 4 ((((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) ∈ ℝ ∧ ((log‘2) / (√‘(2 · 𝐵))) ∈ ℝ) ∧ ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∈ ℝ ∧ ((log‘2) / (√‘(2 · 𝐴))) ∈ ℝ)) → (((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∧ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))) → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
188179, 183, 184, 186, 187syl22anc 1324 . . 3 (𝜑 → (((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) < (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) ∧ ((log‘2) / (√‘(2 · 𝐵))) < ((log‘2) / (√‘(2 · 𝐴)))) → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
189178, 188syld 47 . 2 (𝜑 → (𝐴 < 𝐵 → ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
190 fveq2 6153 . . . . . . . . 9 (𝑛 = 𝐵 → (√‘𝑛) = (√‘𝐵))
191190fveq2d 6157 . . . . . . . 8 (𝑛 = 𝐵 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝐵)))
192191oveq2d 6626 . . . . . . 7 (𝑛 = 𝐵 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝐵))))
193 oveq1 6617 . . . . . . . . 9 (𝑛 = 𝐵 → (𝑛 / 2) = (𝐵 / 2))
194193fveq2d 6157 . . . . . . . 8 (𝑛 = 𝐵 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝐵 / 2)))
195194oveq2d 6626 . . . . . . 7 (𝑛 = 𝐵 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝐵 / 2))))
196192, 195oveq12d 6628 . . . . . 6 (𝑛 = 𝐵 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))))
197 oveq2 6618 . . . . . . . 8 (𝑛 = 𝐵 → (2 · 𝑛) = (2 · 𝐵))
198197fveq2d 6157 . . . . . . 7 (𝑛 = 𝐵 → (√‘(2 · 𝑛)) = (√‘(2 · 𝐵)))
199198oveq2d 6626 . . . . . 6 (𝑛 = 𝐵 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝐵))))
200196, 199oveq12d 6628 . . . . 5 (𝑛 = 𝐵 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))))
201 bposlem7.1 . . . . 5 𝐹 = (𝑛 ∈ ℕ ↦ ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))))
202 ovex 6638 . . . . 5 ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) ∈ V
203200, 201, 202fvmpt 6244 . . . 4 (𝐵 ∈ ℕ → (𝐹𝐵) = ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))))
2041, 203syl 17 . . 3 (𝜑 → (𝐹𝐵) = ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))))
205 fveq2 6153 . . . . . . . . 9 (𝑛 = 𝐴 → (√‘𝑛) = (√‘𝐴))
206205fveq2d 6157 . . . . . . . 8 (𝑛 = 𝐴 → (𝐺‘(√‘𝑛)) = (𝐺‘(√‘𝐴)))
207206oveq2d 6626 . . . . . . 7 (𝑛 = 𝐴 → ((√‘2) · (𝐺‘(√‘𝑛))) = ((√‘2) · (𝐺‘(√‘𝐴))))
208 oveq1 6617 . . . . . . . . 9 (𝑛 = 𝐴 → (𝑛 / 2) = (𝐴 / 2))
209208fveq2d 6157 . . . . . . . 8 (𝑛 = 𝐴 → (𝐺‘(𝑛 / 2)) = (𝐺‘(𝐴 / 2)))
210209oveq2d 6626 . . . . . . 7 (𝑛 = 𝐴 → ((9 / 4) · (𝐺‘(𝑛 / 2))) = ((9 / 4) · (𝐺‘(𝐴 / 2))))
211207, 210oveq12d 6628 . . . . . 6 (𝑛 = 𝐴 → (((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) = (((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))))
212 oveq2 6618 . . . . . . . 8 (𝑛 = 𝐴 → (2 · 𝑛) = (2 · 𝐴))
213212fveq2d 6157 . . . . . . 7 (𝑛 = 𝐴 → (√‘(2 · 𝑛)) = (√‘(2 · 𝐴)))
214213oveq2d 6626 . . . . . 6 (𝑛 = 𝐴 → ((log‘2) / (√‘(2 · 𝑛))) = ((log‘2) / (√‘(2 · 𝐴))))
215211, 214oveq12d 6628 . . . . 5 (𝑛 = 𝐴 → ((((√‘2) · (𝐺‘(√‘𝑛))) + ((9 / 4) · (𝐺‘(𝑛 / 2)))) + ((log‘2) / (√‘(2 · 𝑛)))) = ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))))
216 ovex 6638 . . . . 5 ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))) ∈ V
217215, 201, 216fvmpt 6244 . . . 4 (𝐴 ∈ ℕ → (𝐹𝐴) = ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))))
21811, 217syl 17 . . 3 (𝜑 → (𝐹𝐴) = ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴)))))
219204, 218breq12d 4631 . 2 (𝜑 → ((𝐹𝐵) < (𝐹𝐴) ↔ ((((√‘2) · (𝐺‘(√‘𝐵))) + ((9 / 4) · (𝐺‘(𝐵 / 2)))) + ((log‘2) / (√‘(2 · 𝐵)))) < ((((√‘2) · (𝐺‘(√‘𝐴))) + ((9 / 4) · (𝐺‘(𝐴 / 2)))) + ((log‘2) / (√‘(2 · 𝐴))))))
220189, 219sylibrd 249 1 (𝜑 → (𝐴 < 𝐵 → (𝐹𝐵) < (𝐹𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480   ∈ wcel 1987   class class class wbr 4618   ↦ cmpt 4678  ‘cfv 5852  (class class class)co 6610  ℝcr 9887  0cc0 9888  1c1 9889   + caddc 9891   · cmul 9893   < clt 10026   ≤ cle 10027   / cdiv 10636  ℕcn 10972  2c2 11022  3c3 11023  4c4 11024  9c9 11029  ℝ+crp 11784  ↑cexp 12808  √csqrt 13915  eceu 14729  logclog 24222 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966  ax-addf 9967  ax-mulf 9968 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-iin 4493  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-of 6857  df-om 7020  df-1st 7120  df-2nd 7121  df-supp 7248  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-2o 7513  df-oadd 7516  df-er 7694  df-map 7811  df-pm 7812  df-ixp 7861  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-fsupp 8228  df-fi 8269  df-sup 8300  df-inf 8301  df-oi 8367  df-card 8717  df-cda 8942  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-4 11033  df-5 11034  df-6 11035  df-7 11036  df-8 11037  df-9 11038  df-n0 11245  df-z 11330  df-dec 11446  df-uz 11640  df-q 11741  df-rp 11785  df-xneg 11898  df-xadd 11899  df-xmul 11900  df-ioo 12129  df-ioc 12130  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-fl 12541  df-mod 12617  df-seq 12750  df-exp 12809  df-fac 13009  df-bc 13038  df-hash 13066  df-shft 13749  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-limsup 14144  df-clim 14161  df-rlim 14162  df-sum 14359  df-ef 14734  df-e 14735  df-sin 14736  df-cos 14737  df-pi 14739  df-struct 15794  df-ndx 15795  df-slot 15796  df-base 15797  df-sets 15798  df-ress 15799  df-plusg 15886  df-mulr 15887  df-starv 15888  df-sca 15889  df-vsca 15890  df-ip 15891  df-tset 15892  df-ple 15893  df-ds 15896  df-unif 15897  df-hom 15898  df-cco 15899  df-rest 16015  df-topn 16016  df-0g 16034  df-gsum 16035  df-topgen 16036  df-pt 16037  df-prds 16040  df-xrs 16094  df-qtop 16099  df-imas 16100  df-xps 16102  df-mre 16178  df-mrc 16179  df-acs 16181  df-mgm 17174  df-sgrp 17216  df-mnd 17227  df-submnd 17268  df-mulg 17473  df-cntz 17682  df-cmn 18127  df-psmet 19670  df-xmet 19671  df-met 19672  df-bl 19673  df-mopn 19674  df-fbas 19675  df-fg 19676  df-cnfld 19679  df-top 20631  df-topon 20648  df-topsp 20661  df-bases 20674  df-cld 20746  df-ntr 20747  df-cls 20748  df-nei 20825  df-lp 20863  df-perf 20864  df-cn 20954  df-cnp 20955  df-haus 21042  df-tx 21288  df-hmeo 21481  df-fil 21573  df-fm 21665  df-flim 21666  df-flf 21667  df-xms 22048  df-ms 22049  df-tms 22050  df-cncf 22604  df-limc 23553  df-dv 23554  df-log 24224 This theorem is referenced by:  bposlem9  24934
 Copyright terms: Public domain W3C validator