Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  br1cossxrncnvepres Structured version   Visualization version   GIF version

Theorem br1cossxrncnvepres 35686
Description: 𝐵, 𝐶 and 𝐷, 𝐸 are cosets by a range Cartesian product with the restricted converse epsilon class: a binary relation. (Contributed by Peter Mazsa, 12-May-2021.)
Assertion
Ref Expression
br1cossxrncnvepres (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷))))
Distinct variable groups:   𝑢,𝐴   𝑢,𝐵   𝑢,𝐶   𝑢,𝐷   𝑢,𝐸   𝑢,𝑅   𝑢,𝑉   𝑢,𝑊   𝑢,𝑋   𝑢,𝑌

Proof of Theorem br1cossxrncnvepres
StepHypRef Expression
1 br1cossxrnres 35682 . 2 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝑢 E 𝐶𝑢𝑅𝐵) ∧ (𝑢 E 𝐸𝑢𝑅𝐷))))
2 brcnvep 35520 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐶𝐶𝑢))
32elv 3500 . . . . 5 (𝑢 E 𝐶𝐶𝑢)
43anbi1i 625 . . . 4 ((𝑢 E 𝐶𝑢𝑅𝐵) ↔ (𝐶𝑢𝑢𝑅𝐵))
5 brcnvep 35520 . . . . . 6 (𝑢 ∈ V → (𝑢 E 𝐸𝐸𝑢))
65elv 3500 . . . . 5 (𝑢 E 𝐸𝐸𝑢)
76anbi1i 625 . . . 4 ((𝑢 E 𝐸𝑢𝑅𝐷) ↔ (𝐸𝑢𝑢𝑅𝐷))
84, 7anbi12i 628 . . 3 (((𝑢 E 𝐶𝑢𝑅𝐵) ∧ (𝑢 E 𝐸𝑢𝑅𝐷)) ↔ ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷)))
98rexbii 3247 . 2 (∃𝑢𝐴 ((𝑢 E 𝐶𝑢𝑅𝐵) ∧ (𝑢 E 𝐸𝑢𝑅𝐷)) ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷)))
101, 9syl6bb 289 1 (((𝐵𝑉𝐶𝑊) ∧ (𝐷𝑋𝐸𝑌)) → (⟨𝐵, 𝐶⟩ ≀ (𝑅 ⋉ ( E ↾ 𝐴))⟨𝐷, 𝐸⟩ ↔ ∃𝑢𝐴 ((𝐶𝑢𝑢𝑅𝐵) ∧ (𝐸𝑢𝑢𝑅𝐷))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  wcel 2110  wrex 3139  Vcvv 3495  cop 4567   class class class wbr 5059   E cep 5459  ccnv 5549  cres 5552  cxrn 35446  ccoss 35447
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2156  ax-12 2172  ax-ext 2793  ax-sep 5196  ax-nul 5203  ax-pow 5259  ax-pr 5322  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3497  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4833  df-br 5060  df-opab 5122  df-mpt 5140  df-id 5455  df-eprel 5460  df-xp 5556  df-rel 5557  df-cnv 5558  df-co 5559  df-dm 5560  df-rn 5561  df-res 5562  df-iota 6309  df-fun 6352  df-fn 6353  df-f 6354  df-fo 6356  df-fv 6358  df-1st 7683  df-2nd 7684  df-xrn 35617  df-coss 35653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator