![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > br2coss | Structured version Visualization version GIF version |
Description: Cosets by ≀ 𝑅 binary relation. (Contributed by Peter Mazsa, 25-Aug-2019.) |
Ref | Expression |
---|---|
br2coss | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcoss3 34511 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) ≠ ∅)) | |
2 | cnvcosseq 34515 | . . . . 5 ⊢ ◡ ≀ 𝑅 = ≀ 𝑅 | |
3 | 2 | eceq2i 34364 | . . . 4 ⊢ [𝐴]◡ ≀ 𝑅 = [𝐴] ≀ 𝑅 |
4 | 2 | eceq2i 34364 | . . . 4 ⊢ [𝐵]◡ ≀ 𝑅 = [𝐵] ≀ 𝑅 |
5 | 3, 4 | ineq12i 3955 | . . 3 ⊢ ([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) = ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) |
6 | 5 | neeq1i 2996 | . 2 ⊢ (([𝐴]◡ ≀ 𝑅 ∩ [𝐵]◡ ≀ 𝑅) ≠ ∅ ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅) |
7 | 1, 6 | syl6bb 276 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≀ ≀ 𝑅𝐵 ↔ ([𝐴] ≀ 𝑅 ∩ [𝐵] ≀ 𝑅) ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 ≠ wne 2932 ∩ cin 3714 ∅c0 4058 class class class wbr 4804 ◡ccnv 5265 [cec 7909 ≀ ccoss 34296 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-ec 7913 df-coss 34492 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |