![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brab | Structured version Visualization version GIF version |
Description: The law of concretion for a binary relation. (Contributed by NM, 16-Aug-1999.) |
Ref | Expression |
---|---|
opelopab.1 | ⊢ 𝐴 ∈ V |
opelopab.2 | ⊢ 𝐵 ∈ V |
opelopab.3 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
opelopab.4 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
brab.5 | ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} |
Ref | Expression |
---|---|
brab | ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opelopab.1 | . 2 ⊢ 𝐴 ∈ V | |
2 | opelopab.2 | . 2 ⊢ 𝐵 ∈ V | |
3 | opelopab.3 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
4 | opelopab.4 | . . 3 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
5 | brab.5 | . . 3 ⊢ 𝑅 = {〈𝑥, 𝑦〉 ∣ 𝜑} | |
6 | 3, 4, 5 | brabg 5023 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴𝑅𝐵 ↔ 𝜒)) |
7 | 1, 2, 6 | mp2an 708 | 1 ⊢ (𝐴𝑅𝐵 ↔ 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1523 ∈ wcel 2030 Vcvv 3231 class class class wbr 4685 {copab 4745 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 |
This theorem is referenced by: opbrop 5232 f1oweALT 7194 frxp 7332 fnwelem 7337 dftpos4 7416 dfac3 8982 axdc2lem 9308 brdom7disj 9391 brdom6disj 9392 ordpipq 9802 ltresr 9999 shftfn 13857 2shfti 13864 ishpg 25696 brcgr 25825 ex-opab 27419 br8d 29548 br8 31772 br6 31773 br4 31774 poseq 31878 dfbigcup2 32131 brsegle 32340 heiborlem2 33741 |
Copyright terms: Public domain | W3C validator |