Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brabg2 Structured version   Visualization version   GIF version

Theorem brabg2 33823
Description: Relation by a binary relation abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
Hypotheses
Ref Expression
brabg2.1 (𝑥 = 𝐴 → (𝜑𝜓))
brabg2.2 (𝑦 = 𝐵 → (𝜓𝜒))
brabg2.3 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
brabg2.4 (𝜒𝐴𝐶)
Assertion
Ref Expression
brabg2 (𝐵𝐷 → (𝐴𝑅𝐵𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝜒,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)

Proof of Theorem brabg2
StepHypRef Expression
1 brabg2.3 . . . . 5 𝑅 = {⟨𝑥, 𝑦⟩ ∣ 𝜑}
21relopabi 5401 . . . 4 Rel 𝑅
32brrelexi 5315 . . 3 (𝐴𝑅𝐵𝐴 ∈ V)
4 brabg2.1 . . . . . . 7 (𝑥 = 𝐴 → (𝜑𝜓))
5 brabg2.2 . . . . . . 7 (𝑦 = 𝐵 → (𝜓𝜒))
64, 5, 1brabg 5144 . . . . . 6 ((𝐴 ∈ V ∧ 𝐵𝐷) → (𝐴𝑅𝐵𝜒))
76biimpd 219 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝐷) → (𝐴𝑅𝐵𝜒))
87ex 449 . . . 4 (𝐴 ∈ V → (𝐵𝐷 → (𝐴𝑅𝐵𝜒)))
98com3l 89 . . 3 (𝐵𝐷 → (𝐴𝑅𝐵 → (𝐴 ∈ V → 𝜒)))
103, 9mpdi 45 . 2 (𝐵𝐷 → (𝐴𝑅𝐵𝜒))
11 brabg2.4 . . 3 (𝜒𝐴𝐶)
124, 5, 1brabg 5144 . . . . 5 ((𝐴𝐶𝐵𝐷) → (𝐴𝑅𝐵𝜒))
1312exbiri 653 . . . 4 (𝐴𝐶 → (𝐵𝐷 → (𝜒𝐴𝑅𝐵)))
1413com3l 89 . . 3 (𝐵𝐷 → (𝜒 → (𝐴𝐶𝐴𝑅𝐵)))
1511, 14mpdi 45 . 2 (𝐵𝐷 → (𝜒𝐴𝑅𝐵))
1610, 15impbid 202 1 (𝐵𝐷 → (𝐴𝑅𝐵𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  Vcvv 3340   class class class wbr 4804  {copab 4864
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-br 4805  df-opab 4865  df-xp 5272  df-rel 5273
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator