HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  brafnmul Structured version   Visualization version   GIF version

Theorem brafnmul 28680
Description: Anti-linearity property of bra functional for multiplication. (Contributed by NM, 31-May-2006.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
Assertion
Ref Expression
brafnmul ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 · 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵)))

Proof of Theorem brafnmul
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hvmulcl 27740 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝐴 · 𝐵) ∈ ℋ)
2 brafval 28672 . . 3 ((𝐴 · 𝐵) ∈ ℋ → (bra‘(𝐴 · 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 · 𝐵))))
31, 2syl 17 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 · 𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 · 𝐵))))
4 cjcl 13787 . . . 4 (𝐴 ∈ ℂ → (∗‘𝐴) ∈ ℂ)
5 brafn 28676 . . . 4 (𝐵 ∈ ℋ → (bra‘𝐵): ℋ⟶ℂ)
6 hfmmval 28468 . . . 4 (((∗‘𝐴) ∈ ℂ ∧ (bra‘𝐵): ℋ⟶ℂ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥))))
74, 5, 6syl2an 494 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥))))
8 his5 27813 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih (𝐴 · 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵)))
983expa 1262 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝑥 ∈ ℋ) ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih (𝐴 · 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵)))
109an32s 845 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih (𝐴 · 𝐵)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵)))
11 braval 28673 . . . . . . 7 ((𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ) → ((bra‘𝐵)‘𝑥) = (𝑥 ·ih 𝐵))
1211adantll 749 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((bra‘𝐵)‘𝑥) = (𝑥 ·ih 𝐵))
1312oveq2d 6626 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)) = ((∗‘𝐴) · (𝑥 ·ih 𝐵)))
1410, 13eqtr4d 2658 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih (𝐴 · 𝐵)) = ((∗‘𝐴) · ((bra‘𝐵)‘𝑥)))
1514mpteq2dva 4709 . . 3 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 · 𝐵))) = (𝑥 ∈ ℋ ↦ ((∗‘𝐴) · ((bra‘𝐵)‘𝑥))))
167, 15eqtr4d 2658 . 2 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → ((∗‘𝐴) ·fn (bra‘𝐵)) = (𝑥 ∈ ℋ ↦ (𝑥 ·ih (𝐴 · 𝐵))))
173, 16eqtr4d 2658 1 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ) → (bra‘(𝐴 · 𝐵)) = ((∗‘𝐴) ·fn (bra‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cmpt 4678  wf 5848  cfv 5852  (class class class)co 6610  cc 9886   · cmul 9893  ccj 13778  chil 27646   · csm 27648   ·ih csp 27649   ·fn chft 27669  bracbr 27683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-hilex 27726  ax-hfvmul 27732  ax-hfi 27806  ax-his1 27809  ax-his3 27811
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-po 5000  df-so 5001  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-2 11031  df-cj 13781  df-re 13782  df-im 13783  df-hfmul 28463  df-bra 28579
This theorem is referenced by:  cnvbramul  28844
  Copyright terms: Public domain W3C validator