Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcgr3 Structured version   Visualization version   GIF version

Theorem brcgr3 31822
Description: Binary relationship form of the three-place congruence predicate. (Contributed by Scott Fenton, 4-Oct-2013.)
Assertion
Ref Expression
brcgr3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))

Proof of Theorem brcgr3
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opeq1 4375 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
21breq1d 4628 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩))
3 opeq1 4375 . . . 4 (𝑎 = 𝐴 → ⟨𝑎, 𝑐⟩ = ⟨𝐴, 𝑐⟩)
43breq1d 4628 . . 3 (𝑎 = 𝐴 → (⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩))
52, 43anbi12d 1397 . 2 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
6 opeq2 4376 . . . 4 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
76breq1d 4628 . . 3 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩))
8 opeq1 4375 . . . 4 (𝑏 = 𝐵 → ⟨𝑏, 𝑐⟩ = ⟨𝐵, 𝑐⟩)
98breq1d 4628 . . 3 (𝑏 = 𝐵 → (⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))
107, 93anbi13d 1398 . 2 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩)))
11 opeq2 4376 . . . 4 (𝑐 = 𝐶 → ⟨𝐴, 𝑐⟩ = ⟨𝐴, 𝐶⟩)
1211breq1d 4628 . . 3 (𝑐 = 𝐶 → (⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩))
13 opeq2 4376 . . . 4 (𝑐 = 𝐶 → ⟨𝐵, 𝑐⟩ = ⟨𝐵, 𝐶⟩)
1413breq1d 4628 . . 3 (𝑐 = 𝐶 → (⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩))
1512, 143anbi23d 1399 . 2 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝑐⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
16 opeq1 4375 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑒⟩ = ⟨𝐷, 𝑒⟩)
1716breq2d 4630 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩))
18 opeq1 4375 . . . 4 (𝑑 = 𝐷 → ⟨𝑑, 𝑓⟩ = ⟨𝐷, 𝑓⟩)
1918breq2d 4630 . . 3 (𝑑 = 𝐷 → (⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩))
2017, 193anbi12d 1397 . 2 (𝑑 = 𝐷 → ((⟨𝐴, 𝐵⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩)))
21 opeq2 4376 . . . 4 (𝑒 = 𝐸 → ⟨𝐷, 𝑒⟩ = ⟨𝐷, 𝐸⟩)
2221breq2d 4630 . . 3 (𝑒 = 𝐸 → (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩))
23 opeq1 4375 . . . 4 (𝑒 = 𝐸 → ⟨𝑒, 𝑓⟩ = ⟨𝐸, 𝑓⟩)
2423breq2d 4630 . . 3 (𝑒 = 𝐸 → (⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩))
2522, 243anbi13d 1398 . 2 (𝑒 = 𝐸 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝑒⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝑒, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩)))
26 opeq2 4376 . . . 4 (𝑓 = 𝐹 → ⟨𝐷, 𝑓⟩ = ⟨𝐷, 𝐹⟩)
2726breq2d 4630 . . 3 (𝑓 = 𝐹 → (⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ↔ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩))
28 opeq2 4376 . . . 4 (𝑓 = 𝐹 → ⟨𝐸, 𝑓⟩ = ⟨𝐸, 𝐹⟩)
2928breq2d 4630 . . 3 (𝑓 = 𝐹 → (⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩ ↔ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩))
3027, 293anbi23d 1399 . 2 (𝑓 = 𝐹 → ((⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝑓⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝑓⟩) ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
31 fveq2 6153 . 2 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
32 df-cgr3 31817 . 2 Cgr3 = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)∃𝑒 ∈ (𝔼‘𝑛)∃𝑓 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, ⟨𝑏, 𝑐⟩⟩ ∧ 𝑞 = ⟨𝑑, ⟨𝑒, 𝑓⟩⟩ ∧ (⟨𝑎, 𝑏⟩Cgr⟨𝑑, 𝑒⟩ ∧ ⟨𝑎, 𝑐⟩Cgr⟨𝑑, 𝑓⟩ ∧ ⟨𝑏, 𝑐⟩Cgr⟨𝑒, 𝑓⟩))}
335, 10, 15, 20, 25, 30, 31, 32br6 31382 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝐸 ∈ (𝔼‘𝑁) ∧ 𝐹 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝐶⟩⟩Cgr3⟨𝐷, ⟨𝐸, 𝐹⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐷, 𝐸⟩ ∧ ⟨𝐴, 𝐶⟩Cgr⟨𝐷, 𝐹⟩ ∧ ⟨𝐵, 𝐶⟩Cgr⟨𝐸, 𝐹⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  w3a 1036   = wceq 1480  wcel 1987  cop 4159   class class class wbr 4618  cfv 5852  cn 10971  𝔼cee 25681  Cgrccgr 25683  Cgr3ccgr3 31812
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-iota 5815  df-fv 5860  df-cgr3 31817
This theorem is referenced by:  cgr3permute3  31823  cgr3permute1  31824  cgr3tr4  31828  cgr3com  31829  cgr3rflx  31830  cgrxfr  31831  btwnxfr  31832  lineext  31852  brofs2  31853  brifs2  31854  endofsegid  31861  btwnconn1lem4  31866  btwnconn1lem8  31870  btwnconn1lem11  31873  brsegle2  31885  seglecgr12im  31886  segletr  31890
  Copyright terms: Public domain W3C validator