![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brcofffn | Structured version Visualization version GIF version |
Description: Conditions allowing the decomposition of a binary relation. (Contributed by RP, 8-Jun-2021.) |
Ref | Expression |
---|---|
brcofffn.c | ⊢ (𝜑 → 𝐶 Fn 𝑍) |
brcofffn.d | ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) |
brcofffn.e | ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) |
brcofffn.r | ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
Ref | Expression |
---|---|
brcofffn | ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brcofffn.c | . . . . 5 ⊢ (𝜑 → 𝐶 Fn 𝑍) | |
2 | brcofffn.d | . . . . 5 ⊢ (𝜑 → 𝐷:𝑌⟶𝑍) | |
3 | fnfco 6230 | . . . . 5 ⊢ ((𝐶 Fn 𝑍 ∧ 𝐷:𝑌⟶𝑍) → (𝐶 ∘ 𝐷) Fn 𝑌) | |
4 | 1, 2, 3 | syl2anc 696 | . . . 4 ⊢ (𝜑 → (𝐶 ∘ 𝐷) Fn 𝑌) |
5 | brcofffn.e | . . . 4 ⊢ (𝜑 → 𝐸:𝑋⟶𝑌) | |
6 | brcofffn.r | . . . . 5 ⊢ (𝜑 → 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) | |
7 | coass 5815 | . . . . . 6 ⊢ ((𝐶 ∘ 𝐷) ∘ 𝐸) = (𝐶 ∘ (𝐷 ∘ 𝐸)) | |
8 | 7 | breqi 4810 | . . . . 5 ⊢ (𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵 ↔ 𝐴(𝐶 ∘ (𝐷 ∘ 𝐸))𝐵) |
9 | 6, 8 | sylibr 224 | . . . 4 ⊢ (𝜑 → 𝐴((𝐶 ∘ 𝐷) ∘ 𝐸)𝐵) |
10 | 4, 5, 9 | brcoffn 38830 | . . 3 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) |
11 | 1 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐶 Fn 𝑍) |
12 | 2 | adantr 472 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → 𝐷:𝑌⟶𝑍) |
13 | simprr 813 | . . . . 5 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) | |
14 | 11, 12, 13 | brcoffn 38830 | . . . 4 ⊢ ((𝜑 ∧ (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵)) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
15 | 14 | ex 449 | . . 3 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) → ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
16 | 10, 15 | jcai 560 | . 2 ⊢ (𝜑 → ((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵))) |
17 | simpll 807 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → 𝐴𝐸(𝐸‘𝐴)) | |
18 | simprl 811 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴))) | |
19 | simprr 813 | . . 3 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐷‘(𝐸‘𝐴))𝐶𝐵) | |
20 | 17, 18, 19 | 3jca 1123 | . 2 ⊢ (((𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)(𝐶 ∘ 𝐷)𝐵) ∧ ((𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
21 | 16, 20 | syl 17 | 1 ⊢ (𝜑 → (𝐴𝐸(𝐸‘𝐴) ∧ (𝐸‘𝐴)𝐷(𝐷‘(𝐸‘𝐴)) ∧ (𝐷‘(𝐸‘𝐴))𝐶𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 class class class wbr 4804 ∘ ccom 5270 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 |
This theorem is referenced by: brco3f1o 38833 neicvgmex 38917 neicvgel1 38919 |
Copyright terms: Public domain | W3C validator |