Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcup Structured version   Visualization version   GIF version

Theorem brcup 31723
Description: Binary relationship form of the Cup function. (Contributed by Scott Fenton, 14-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brcup.1 𝐴 ∈ V
brcup.2 𝐵 ∈ V
brcup.3 𝐶 ∈ V
Assertion
Ref Expression
brcup (⟨𝐴, 𝐵⟩Cup𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brcup
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4898 . 2 𝐴, 𝐵⟩ ∈ V
2 brcup.3 . 2 𝐶 ∈ V
3 df-cup 31652 . 2 Cup = (((V × V) × V) ∖ ran ((V ⊗ E ) △ (((1st ∘ E ) ∪ (2nd ∘ E )) ⊗ V)))
4 brcup.1 . . . 4 𝐴 ∈ V
5 brcup.2 . . . 4 𝐵 ∈ V
64, 5opelvv 5131 . . 3 𝐴, 𝐵⟩ ∈ (V × V)
7 brxp 5112 . . 3 (⟨𝐴, 𝐵⟩((V × V) × V)𝐶 ↔ (⟨𝐴, 𝐵⟩ ∈ (V × V) ∧ 𝐶 ∈ V))
86, 2, 7mpbir2an 954 . 2 𝐴, 𝐵⟩((V × V) × V)𝐶
9 epel 4993 . . . . . . 7 (𝑥 E 𝑦𝑥𝑦)
10 vex 3192 . . . . . . . . 9 𝑦 ∈ V
1110, 1brcnv 5270 . . . . . . . 8 (𝑦1st𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩1st 𝑦)
124, 5, 10br1steq 31409 . . . . . . . 8 (⟨𝐴, 𝐵⟩1st 𝑦𝑦 = 𝐴)
1311, 12bitri 264 . . . . . . 7 (𝑦1st𝐴, 𝐵⟩ ↔ 𝑦 = 𝐴)
149, 13anbi12ci 733 . . . . . 6 ((𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩) ↔ (𝑦 = 𝐴𝑥𝑦))
1514exbii 1771 . . . . 5 (∃𝑦(𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩) ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
16 vex 3192 . . . . . 6 𝑥 ∈ V
1716, 1brco 5257 . . . . 5 (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦(𝑥 E 𝑦𝑦1st𝐴, 𝐵⟩))
184clel3 3328 . . . . 5 (𝑥𝐴 ↔ ∃𝑦(𝑦 = 𝐴𝑥𝑦))
1915, 17, 183bitr4i 292 . . . 4 (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐴)
2010, 1brcnv 5270 . . . . . . . 8 (𝑦2nd𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩2nd 𝑦)
214, 5, 10br2ndeq 31410 . . . . . . . 8 (⟨𝐴, 𝐵⟩2nd 𝑦𝑦 = 𝐵)
2220, 21bitri 264 . . . . . . 7 (𝑦2nd𝐴, 𝐵⟩ ↔ 𝑦 = 𝐵)
239, 22anbi12ci 733 . . . . . 6 ((𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩) ↔ (𝑦 = 𝐵𝑥𝑦))
2423exbii 1771 . . . . 5 (∃𝑦(𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩) ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
2516, 1brco 5257 . . . . 5 (𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩ ↔ ∃𝑦(𝑥 E 𝑦𝑦2nd𝐴, 𝐵⟩))
265clel3 3328 . . . . 5 (𝑥𝐵 ↔ ∃𝑦(𝑦 = 𝐵𝑥𝑦))
2724, 25, 263bitr4i 292 . . . 4 (𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐵)
2819, 27orbi12i 543 . . 3 ((𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ∨ 𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩) ↔ (𝑥𝐴𝑥𝐵))
29 brun 4668 . . 3 (𝑥((1st ∘ E ) ∪ (2nd ∘ E ))⟨𝐴, 𝐵⟩ ↔ (𝑥(1st ∘ E )⟨𝐴, 𝐵⟩ ∨ 𝑥(2nd ∘ E )⟨𝐴, 𝐵⟩))
30 elun 3736 . . 3 (𝑥 ∈ (𝐴𝐵) ↔ (𝑥𝐴𝑥𝐵))
3128, 29, 303bitr4ri 293 . 2 (𝑥 ∈ (𝐴𝐵) ↔ 𝑥((1st ∘ E ) ∪ (2nd ∘ E ))⟨𝐴, 𝐵⟩)
321, 2, 3, 8, 31brtxpsd3 31680 1 (⟨𝐴, 𝐵⟩Cup𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wo 383  wa 384   = wceq 1480  wex 1701  wcel 1987  Vcvv 3189  cun 3557  cop 4159   class class class wbr 4618   E cep 4988   × cxp 5077  ccnv 5078  ccom 5083  1st c1st 7118  2nd c2nd 7119  Cupccup 31629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-symdif 3827  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-eprel 4990  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fo 5858  df-fv 5860  df-1st 7120  df-2nd 7121  df-txp 31637  df-cup 31652
This theorem is referenced by:  brsuccf  31725
  Copyright terms: Public domain W3C validator