MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brdom3 Structured version   Visualization version   GIF version

Theorem brdom3 9302
Description: Equivalence to a dominance relation. (Contributed by NM, 27-Mar-2007.)
Hypothesis
Ref Expression
brdom3.2 𝐵 ∈ V
Assertion
Ref Expression
brdom3 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Distinct variable groups:   𝑥,𝑓,𝑦,𝐴   𝐵,𝑓,𝑥,𝑦

Proof of Theorem brdom3
StepHypRef Expression
1 reldom 7913 . . . . . . . . 9 Rel ≼
21brrelexi 5123 . . . . . . . 8 (𝐴𝐵𝐴 ∈ V)
3 0sdomg 8041 . . . . . . . 8 (𝐴 ∈ V → (∅ ≺ 𝐴𝐴 ≠ ∅))
42, 3syl 17 . . . . . . 7 (𝐴𝐵 → (∅ ≺ 𝐴𝐴 ≠ ∅))
5 df-ne 2791 . . . . . . 7 (𝐴 ≠ ∅ ↔ ¬ 𝐴 = ∅)
64, 5syl6bb 276 . . . . . 6 (𝐴𝐵 → (∅ ≺ 𝐴 ↔ ¬ 𝐴 = ∅))
76biimpar 502 . . . . 5 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∅ ≺ 𝐴)
8 fodomr 8063 . . . . . 6 ((∅ ≺ 𝐴𝐴𝐵) → ∃𝑓 𝑓:𝐵onto𝐴)
98ancoms 469 . . . . 5 ((𝐴𝐵 ∧ ∅ ≺ 𝐴) → ∃𝑓 𝑓:𝐵onto𝐴)
107, 9syldan 487 . . . 4 ((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴)
11 pm5.6 950 . . . 4 (((𝐴𝐵 ∧ ¬ 𝐴 = ∅) → ∃𝑓 𝑓:𝐵onto𝐴) ↔ (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴)))
1210, 11mpbi 220 . . 3 (𝐴𝐵 → (𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴))
13 br0 4666 . . . . . . . 8 ¬ 𝑥𝑦
1413nex 1728 . . . . . . 7 ¬ ∃𝑦 𝑥𝑦
15 exmo 2494 . . . . . . 7 (∃𝑦 𝑥𝑦 ∨ ∃*𝑦 𝑥𝑦)
1614, 15mtpor 1692 . . . . . 6 ∃*𝑦 𝑥𝑦
1716ax-gen 1719 . . . . 5 𝑥∃*𝑦 𝑥𝑦
18 rzal 4050 . . . . 5 (𝐴 = ∅ → ∀𝑥𝐴𝑦𝐵 𝑦𝑥)
19 0ex 4755 . . . . . 6 ∅ ∈ V
20 breq 4620 . . . . . . . . 9 (𝑓 = ∅ → (𝑥𝑓𝑦𝑥𝑦))
2120mobidv 2490 . . . . . . . 8 (𝑓 = ∅ → (∃*𝑦 𝑥𝑓𝑦 ↔ ∃*𝑦 𝑥𝑦))
2221albidv 1846 . . . . . . 7 (𝑓 = ∅ → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ↔ ∀𝑥∃*𝑦 𝑥𝑦))
23 breq 4620 . . . . . . . . 9 (𝑓 = ∅ → (𝑦𝑓𝑥𝑦𝑥))
2423rexbidv 3046 . . . . . . . 8 (𝑓 = ∅ → (∃𝑦𝐵 𝑦𝑓𝑥 ↔ ∃𝑦𝐵 𝑦𝑥))
2524ralbidv 2981 . . . . . . 7 (𝑓 = ∅ → (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑥))
2622, 25anbi12d 746 . . . . . 6 (𝑓 = ∅ → ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) ↔ (∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥)))
2719, 26spcev 3289 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑥) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
2817, 18, 27sylancr 694 . . . 4 (𝐴 = ∅ → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
29 fofun 6078 . . . . . . 7 (𝑓:𝐵onto𝐴 → Fun 𝑓)
30 dffun6 5867 . . . . . . . 8 (Fun 𝑓 ↔ (Rel 𝑓 ∧ ∀𝑥∃*𝑦 𝑥𝑓𝑦))
3130simprbi 480 . . . . . . 7 (Fun 𝑓 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
3229, 31syl 17 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥∃*𝑦 𝑥𝑓𝑦)
33 dffo4 6336 . . . . . . 7 (𝑓:𝐵onto𝐴 ↔ (𝑓:𝐵𝐴 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3433simprbi 480 . . . . . 6 (𝑓:𝐵onto𝐴 → ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
3532, 34jca 554 . . . . 5 (𝑓:𝐵onto𝐴 → (∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3635eximi 1759 . . . 4 (∃𝑓 𝑓:𝐵onto𝐴 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3728, 36jaoi 394 . . 3 ((𝐴 = ∅ ∨ ∃𝑓 𝑓:𝐵onto𝐴) → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
3812, 37syl 17 . 2 (𝐴𝐵 → ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
39 inss1 3816 . . . . . . . . . . 11 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝑓
4039ssbri 4662 . . . . . . . . . 10 (𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦𝑥𝑓𝑦)
4140moimi 2519 . . . . . . . . 9 (∃*𝑦 𝑥𝑓𝑦 → ∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4241alimi 1736 . . . . . . . 8 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
43 relxp 5193 . . . . . . . . . 10 Rel (𝐵 × 𝐴)
44 relin2 5203 . . . . . . . . . 10 (Rel (𝐵 × 𝐴) → Rel (𝑓 ∩ (𝐵 × 𝐴)))
4543, 44ax-mp 5 . . . . . . . . 9 Rel (𝑓 ∩ (𝐵 × 𝐴))
46 dffun6 5867 . . . . . . . . 9 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (Rel (𝑓 ∩ (𝐵 × 𝐴)) ∧ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦))
4745, 46mpbiran 952 . . . . . . . 8 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ ∀𝑥∃*𝑦 𝑥(𝑓 ∩ (𝐵 × 𝐴))𝑦)
4842, 47sylibr 224 . . . . . . 7 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → Fun (𝑓 ∩ (𝐵 × 𝐴)))
49 funfn 5882 . . . . . . 7 (Fun (𝑓 ∩ (𝐵 × 𝐴)) ↔ (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
5048, 49sylib 208 . . . . . 6 (∀𝑥∃*𝑦 𝑥𝑓𝑦 → (𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)))
51 rninxp 5537 . . . . . . 7 (ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴 ↔ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥)
5251biimpri 218 . . . . . 6 (∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥 → ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴)
5350, 52anim12i 589 . . . . 5 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
54 df-fo 5858 . . . . 5 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴 ↔ ((𝑓 ∩ (𝐵 × 𝐴)) Fn dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ ran (𝑓 ∩ (𝐵 × 𝐴)) = 𝐴))
5553, 54sylibr 224 . . . 4 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → (𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴)
56 vex 3192 . . . . . . 7 𝑓 ∈ V
5756inex1 4764 . . . . . 6 (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5857dmex 7053 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ∈ V
5958fodom 9296 . . . 4 ((𝑓 ∩ (𝐵 × 𝐴)):dom (𝑓 ∩ (𝐵 × 𝐴))–onto𝐴𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)))
60 brdom3.2 . . . . . 6 𝐵 ∈ V
61 inss2 3817 . . . . . . . 8 (𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴)
62 dmss 5288 . . . . . . . 8 ((𝑓 ∩ (𝐵 × 𝐴)) ⊆ (𝐵 × 𝐴) → dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴))
6361, 62ax-mp 5 . . . . . . 7 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ dom (𝐵 × 𝐴)
64 dmxpss 5529 . . . . . . 7 dom (𝐵 × 𝐴) ⊆ 𝐵
6563, 64sstri 3596 . . . . . 6 dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵
66 ssdomg 7953 . . . . . 6 (𝐵 ∈ V → (dom (𝑓 ∩ (𝐵 × 𝐴)) ⊆ 𝐵 → dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵))
6760, 65, 66mp2 9 . . . . 5 dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵
68 domtr 7961 . . . . 5 ((𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) ∧ dom (𝑓 ∩ (𝐵 × 𝐴)) ≼ 𝐵) → 𝐴𝐵)
6967, 68mpan2 706 . . . 4 (𝐴 ≼ dom (𝑓 ∩ (𝐵 × 𝐴)) → 𝐴𝐵)
7055, 59, 693syl 18 . . 3 ((∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
7170exlimiv 1855 . 2 (∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥) → 𝐴𝐵)
7238, 71impbii 199 1 (𝐴𝐵 ↔ ∃𝑓(∀𝑥∃*𝑦 𝑥𝑓𝑦 ∧ ∀𝑥𝐴𝑦𝐵 𝑦𝑓𝑥))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1478   = wceq 1480  wex 1701  wcel 1987  ∃*wmo 2470  wne 2790  wral 2907  wrex 2908  Vcvv 3189  cin 3558  wss 3559  c0 3896   class class class wbr 4618   × cxp 5077  dom cdm 5079  ran crn 5080  Rel wrel 5084  Fun wfun 5846   Fn wfn 5847  wf 5848  ontowfo 5850  cdom 7905  csdm 7906
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-ac2 9237
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-card 8717  df-acn 8720  df-ac 8891
This theorem is referenced by:  brdom5  9303  brdom4  9304
  Copyright terms: Public domain W3C validator