Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brelg Structured version   Visualization version   GIF version

Theorem brelg 29547
Description: Two things in a binary relation belong to the relation's domain. (Contributed by Thierry Arnoux, 29-Aug-2017.)
Assertion
Ref Expression
brelg ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴𝐶𝐵𝐷))

Proof of Theorem brelg
StepHypRef Expression
1 ssbr 4729 . . 3 (𝑅 ⊆ (𝐶 × 𝐷) → (𝐴𝑅𝐵𝐴(𝐶 × 𝐷)𝐵))
21imp 444 . 2 ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → 𝐴(𝐶 × 𝐷)𝐵)
3 brxp 5181 . 2 (𝐴(𝐶 × 𝐷)𝐵 ↔ (𝐴𝐶𝐵𝐷))
42, 3sylib 208 1 ((𝑅 ⊆ (𝐶 × 𝐷) ∧ 𝐴𝑅𝐵) → (𝐴𝐶𝐵𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  wcel 2030  wss 3607   class class class wbr 4685   × cxp 5141
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149
This theorem is referenced by:  fpwrelmap  29636
  Copyright terms: Public domain W3C validator