Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breprexplema Structured version   Visualization version   GIF version

Theorem breprexplema 31903
Description: Lemma for breprexp 31906 (induction step for weighted sums over representations) (Contributed by Thierry Arnoux, 7-Dec-2021.)
Hypotheses
Ref Expression
breprexp.n (𝜑𝑁 ∈ ℕ0)
breprexp.s (𝜑𝑆 ∈ ℕ0)
breprexplema.m (𝜑𝑀 ∈ ℕ0)
breprexplema.1 (𝜑𝑀 ≤ ((𝑆 + 1) · 𝑁))
breprexplema.l (((𝜑𝑥 ∈ (0..^(𝑆 + 1))) ∧ 𝑦 ∈ ℕ) → ((𝐿𝑥)‘𝑦) ∈ ℂ)
Assertion
Ref Expression
breprexplema (𝜑 → Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑆 + 1))𝑀)∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑏 ∈ (1...𝑁𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)))
Distinct variable groups:   𝑆,𝑎   𝐿,𝑎,𝑏,𝑑,𝑥,𝑦   𝑀,𝑎,𝑏,𝑑   𝑁,𝑎,𝑏,𝑑   𝑆,𝑏,𝑑,𝑥,𝑦   𝜑,𝑎,𝑏,𝑑,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)   𝑁(𝑥,𝑦)

Proof of Theorem breprexplema
Dummy variables 𝑐 𝑒 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fz1ssnn 12941 . . . . 5 (1...𝑁) ⊆ ℕ
21a1i 11 . . . 4 (𝜑 → (1...𝑁) ⊆ ℕ)
3 breprexplema.m . . . . 5 (𝜑𝑀 ∈ ℕ0)
43nn0zd 12088 . . . 4 (𝜑𝑀 ∈ ℤ)
5 breprexp.s . . . 4 (𝜑𝑆 ∈ ℕ0)
6 eqid 2823 . . . 4 (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) = (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
72, 4, 5, 6reprsuc 31888 . . 3 (𝜑 → ((1...𝑁)(repr‘(𝑆 + 1))𝑀) = 𝑏 ∈ (1...𝑁)ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
87sumeq1d 15060 . 2 (𝜑 → Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑆 + 1))𝑀)∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑑 𝑏 ∈ (1...𝑁)ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)))
9 fzfid 13344 . . 3 (𝜑 → (1...𝑁) ∈ Fin)
101a1i 11 . . . . . 6 ((𝜑𝑏 ∈ (1...𝑁)) → (1...𝑁) ⊆ ℕ)
114adantr 483 . . . . . . 7 ((𝜑𝑏 ∈ (1...𝑁)) → 𝑀 ∈ ℤ)
12 fzssz 12912 . . . . . . . 8 (1...𝑁) ⊆ ℤ
13 simpr 487 . . . . . . . 8 ((𝜑𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
1412, 13sseldi 3967 . . . . . . 7 ((𝜑𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℤ)
1511, 14zsubcld 12095 . . . . . 6 ((𝜑𝑏 ∈ (1...𝑁)) → (𝑀𝑏) ∈ ℤ)
165adantr 483 . . . . . 6 ((𝜑𝑏 ∈ (1...𝑁)) → 𝑆 ∈ ℕ0)
179adantr 483 . . . . . 6 ((𝜑𝑏 ∈ (1...𝑁)) → (1...𝑁) ∈ Fin)
1810, 15, 16, 17reprfi 31889 . . . . 5 ((𝜑𝑏 ∈ (1...𝑁)) → ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ∈ Fin)
19 mptfi 8825 . . . . 5 (((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ∈ Fin → (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin)
2018, 19syl 17 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin)
21 rnfi 8809 . . . 4 ((𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin → ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin)
2220, 21syl 17 . . 3 ((𝜑𝑏 ∈ (1...𝑁)) → ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ∈ Fin)
2310, 15, 16reprval 31883 . . . . 5 ((𝜑𝑏 ∈ (1...𝑁)) → ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) = {𝑐 ∈ ((1...𝑁) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = (𝑀𝑏)})
24 ssrab2 4058 . . . . 5 {𝑐 ∈ ((1...𝑁) ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑐𝑎) = (𝑀𝑏)} ⊆ ((1...𝑁) ↑m (0..^𝑆))
2523, 24eqsstrdi 4023 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ⊆ ((1...𝑁) ↑m (0..^𝑆)))
269elexd 3516 . . . 4 (𝜑 → (1...𝑁) ∈ V)
27 fzonel 13054 . . . . 5 ¬ 𝑆 ∈ (0..^𝑆)
2827a1i 11 . . . 4 (𝜑 → ¬ 𝑆 ∈ (0..^𝑆))
2925, 26, 5, 28, 6actfunsnrndisj 31878 . . 3 (𝜑Disj 𝑏 ∈ (1...𝑁)ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
30 fzofi 13345 . . . . . 6 (0..^(𝑆 + 1)) ∈ Fin
3130a1i 11 . . . . 5 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → (0..^(𝑆 + 1)) ∈ Fin)
32 breprexplema.l . . . . . . . . 9 (((𝜑𝑥 ∈ (0..^(𝑆 + 1))) ∧ 𝑦 ∈ ℕ) → ((𝐿𝑥)‘𝑦) ∈ ℂ)
3332ralrimiva 3184 . . . . . . . 8 ((𝜑𝑥 ∈ (0..^(𝑆 + 1))) → ∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
3433ralrimiva 3184 . . . . . . 7 (𝜑 → ∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
3534ad3antrrr 728 . . . . . 6 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → ∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
36 simpr 487 . . . . . . 7 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → 𝑎 ∈ (0..^(𝑆 + 1)))
37 nfv 1915 . . . . . . . . . . . 12 𝑣(𝜑𝑏 ∈ (1...𝑁))
38 nfcv 2979 . . . . . . . . . . . . 13 𝑣𝑑
39 nfmpt1 5166 . . . . . . . . . . . . . 14 𝑣(𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
4039nfrn 5826 . . . . . . . . . . . . 13 𝑣ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
4138, 40nfel 2994 . . . . . . . . . . . 12 𝑣 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
4237, 41nfan 1900 . . . . . . . . . . 11 𝑣((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
431a1i 11 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (1...𝑁) ⊆ ℕ)
4415ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (𝑀𝑏) ∈ ℤ)
4516ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑆 ∈ ℕ0)
46 simplr 767 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)))
4743, 44, 45, 46reprf 31885 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑣:(0..^𝑆)⟶(1...𝑁))
4813ad3antrrr 728 . . . . . . . . . . . . . 14 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑏 ∈ (1...𝑁))
4945, 48fsnd 6659 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → {⟨𝑆, 𝑏⟩}:{𝑆}⟶(1...𝑁))
50 fzodisjsn 13078 . . . . . . . . . . . . . 14 ((0..^𝑆) ∩ {𝑆}) = ∅
5150a1i 11 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → ((0..^𝑆) ∩ {𝑆}) = ∅)
52 fun2 6543 . . . . . . . . . . . . 13 (((𝑣:(0..^𝑆)⟶(1...𝑁) ∧ {⟨𝑆, 𝑏⟩}:{𝑆}⟶(1...𝑁)) ∧ ((0..^𝑆) ∩ {𝑆}) = ∅) → (𝑣 ∪ {⟨𝑆, 𝑏⟩}):((0..^𝑆) ∪ {𝑆})⟶(1...𝑁))
5347, 49, 51, 52syl21anc 835 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (𝑣 ∪ {⟨𝑆, 𝑏⟩}):((0..^𝑆) ∪ {𝑆})⟶(1...𝑁))
54 simpr 487 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
55 nn0uz 12283 . . . . . . . . . . . . . . . 16 0 = (ℤ‘0)
565, 55eleqtrdi 2925 . . . . . . . . . . . . . . 15 (𝜑𝑆 ∈ (ℤ‘0))
57 fzosplitsn 13148 . . . . . . . . . . . . . . 15 (𝑆 ∈ (ℤ‘0) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆}))
5856, 57syl 17 . . . . . . . . . . . . . 14 (𝜑 → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆}))
5958ad4antr 730 . . . . . . . . . . . . 13 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆}))
6054, 59feq12d 6504 . . . . . . . . . . . 12 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → (𝑑:(0..^(𝑆 + 1))⟶(1...𝑁) ↔ (𝑣 ∪ {⟨𝑆, 𝑏⟩}):((0..^𝑆) ∪ {𝑆})⟶(1...𝑁)))
6153, 60mpbird 259 . . . . . . . . . . 11 (((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩})) → 𝑑:(0..^(𝑆 + 1))⟶(1...𝑁))
62 simpr 487 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
63 vex 3499 . . . . . . . . . . . . . 14 𝑣 ∈ V
64 snex 5334 . . . . . . . . . . . . . 14 {⟨𝑆, 𝑏⟩} ∈ V
6563, 64unex 7471 . . . . . . . . . . . . 13 (𝑣 ∪ {⟨𝑆, 𝑏⟩}) ∈ V
666, 65elrnmpti 5834 . . . . . . . . . . . 12 (𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) ↔ ∃𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
6762, 66sylib 220 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → ∃𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))𝑑 = (𝑣 ∪ {⟨𝑆, 𝑏⟩}))
6842, 61, 67r19.29af 3333 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → 𝑑:(0..^(𝑆 + 1))⟶(1...𝑁))
6968adantr 483 . . . . . . . . 9 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → 𝑑:(0..^(𝑆 + 1))⟶(1...𝑁))
7069, 36ffvelrnd 6854 . . . . . . . 8 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → (𝑑𝑎) ∈ (1...𝑁))
711, 70sseldi 3967 . . . . . . 7 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → (𝑑𝑎) ∈ ℕ)
72 fveq2 6672 . . . . . . . . . 10 (𝑥 = 𝑎 → (𝐿𝑥) = (𝐿𝑎))
7372fveq1d 6674 . . . . . . . . 9 (𝑥 = 𝑎 → ((𝐿𝑥)‘𝑦) = ((𝐿𝑎)‘𝑦))
7473eleq1d 2899 . . . . . . . 8 (𝑥 = 𝑎 → (((𝐿𝑥)‘𝑦) ∈ ℂ ↔ ((𝐿𝑎)‘𝑦) ∈ ℂ))
75 fveq2 6672 . . . . . . . . 9 (𝑦 = (𝑑𝑎) → ((𝐿𝑎)‘𝑦) = ((𝐿𝑎)‘(𝑑𝑎)))
7675eleq1d 2899 . . . . . . . 8 (𝑦 = (𝑑𝑎) → (((𝐿𝑎)‘𝑦) ∈ ℂ ↔ ((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ))
7774, 76rspc2v 3635 . . . . . . 7 ((𝑎 ∈ (0..^(𝑆 + 1)) ∧ (𝑑𝑎) ∈ ℕ) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ))
7836, 71, 77syl2anc 586 . . . . . 6 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ))
7935, 78mpd 15 . . . . 5 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → ((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ)
8031, 79fprodcl 15308 . . . 4 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ)
8180anasss 469 . . 3 ((𝜑 ∧ (𝑏 ∈ (1...𝑁) ∧ 𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) ∈ ℂ)
829, 22, 29, 81fsumiun 15178 . 2 (𝜑 → Σ𝑑 𝑏 ∈ (1...𝑁)ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑏 ∈ (1...𝑁𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)))
8358ad2antrr 724 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (0..^(𝑆 + 1)) = ((0..^𝑆) ∪ {𝑆}))
8483prodeq1d 15277 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = ∏𝑎 ∈ ((0..^𝑆) ∪ {𝑆})((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)))
85 nfv 1915 . . . . . . 7 𝑎((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)))
86 nfcv 2979 . . . . . . 7 𝑎((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆))
87 fzofi 13345 . . . . . . . 8 (0..^𝑆) ∈ Fin
8887a1i 11 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (0..^𝑆) ∈ Fin)
8916adantr 483 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑆 ∈ ℕ0)
9027a1i 11 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ¬ 𝑆 ∈ (0..^𝑆))
911a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (1...𝑁) ⊆ ℕ)
9215adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (𝑀𝑏) ∈ ℤ)
93 simpr 487 . . . . . . . . . . . . 13 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)))
9491, 92, 89, 93reprf 31885 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑒:(0..^𝑆)⟶(1...𝑁))
9594ffnd 6517 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑒 Fn (0..^𝑆))
9695adantr 483 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑒 Fn (0..^𝑆))
9713adantr 483 . . . . . . . . . . . 12 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑏 ∈ (1...𝑁))
98 fnsng 6408 . . . . . . . . . . . 12 ((𝑆 ∈ ℕ0𝑏 ∈ (1...𝑁)) → {⟨𝑆, 𝑏⟩} Fn {𝑆})
9989, 97, 98syl2anc 586 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → {⟨𝑆, 𝑏⟩} Fn {𝑆})
10099adantr 483 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → {⟨𝑆, 𝑏⟩} Fn {𝑆})
10150a1i 11 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((0..^𝑆) ∩ {𝑆}) = ∅)
102 simpr 487 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^𝑆))
103 fvun1 6756 . . . . . . . . . 10 ((𝑒 Fn (0..^𝑆) ∧ {⟨𝑆, 𝑏⟩} Fn {𝑆} ∧ (((0..^𝑆) ∩ {𝑆}) = ∅ ∧ 𝑎 ∈ (0..^𝑆))) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎) = (𝑒𝑎))
10496, 100, 101, 102, 103syl112anc 1370 . . . . . . . . 9 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎) = (𝑒𝑎))
105104fveq2d 6676 . . . . . . . 8 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = ((𝐿𝑎)‘(𝑒𝑎)))
10634ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
107106adantr 483 . . . . . . . . 9 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ)
108 fzossfzop1 13118 . . . . . . . . . . . . 13 (𝑆 ∈ ℕ0 → (0..^𝑆) ⊆ (0..^(𝑆 + 1)))
1095, 108syl 17 . . . . . . . . . . . 12 (𝜑 → (0..^𝑆) ⊆ (0..^(𝑆 + 1)))
110109ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (0..^𝑆) ⊆ (0..^(𝑆 + 1)))
111110sselda 3969 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → 𝑎 ∈ (0..^(𝑆 + 1)))
11294ffvelrnda 6853 . . . . . . . . . . 11 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒𝑎) ∈ (1...𝑁))
1131, 112sseldi 3967 . . . . . . . . . 10 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑒𝑎) ∈ ℕ)
114 fveq2 6672 . . . . . . . . . . . 12 (𝑦 = (𝑒𝑎) → ((𝐿𝑎)‘𝑦) = ((𝐿𝑎)‘(𝑒𝑎)))
115114eleq1d 2899 . . . . . . . . . . 11 (𝑦 = (𝑒𝑎) → (((𝐿𝑎)‘𝑦) ∈ ℂ ↔ ((𝐿𝑎)‘(𝑒𝑎)) ∈ ℂ))
11674, 115rspc2v 3635 . . . . . . . . . 10 ((𝑎 ∈ (0..^(𝑆 + 1)) ∧ (𝑒𝑎) ∈ ℕ) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑎)‘(𝑒𝑎)) ∈ ℂ))
117111, 113, 116syl2anc 586 . . . . . . . . 9 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑎)‘(𝑒𝑎)) ∈ ℂ))
118107, 117mpd 15 . . . . . . . 8 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑒𝑎)) ∈ ℂ)
119105, 118eqeltrd 2915 . . . . . . 7 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) ∈ ℂ)
120 fveq2 6672 . . . . . . . 8 (𝑎 = 𝑆 → (𝐿𝑎) = (𝐿𝑆))
121 fveq2 6672 . . . . . . . 8 (𝑎 = 𝑆 → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎) = ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆))
122120, 121fveq12d 6679 . . . . . . 7 (𝑎 = 𝑆 → ((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆)))
12350a1i 11 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((0..^𝑆) ∩ {𝑆}) = ∅)
124 snidg 4601 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0𝑆 ∈ {𝑆})
12589, 124syl 17 . . . . . . . . . . 11 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑆 ∈ {𝑆})
126 fvun2 6757 . . . . . . . . . . 11 ((𝑒 Fn (0..^𝑆) ∧ {⟨𝑆, 𝑏⟩} Fn {𝑆} ∧ (((0..^𝑆) ∩ {𝑆}) = ∅ ∧ 𝑆 ∈ {𝑆})) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆) = ({⟨𝑆, 𝑏⟩}‘𝑆))
12795, 99, 123, 125, 126syl112anc 1370 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆) = ({⟨𝑆, 𝑏⟩}‘𝑆))
128 fvsng 6944 . . . . . . . . . . 11 ((𝑆 ∈ ℕ0𝑏 ∈ (1...𝑁)) → ({⟨𝑆, 𝑏⟩}‘𝑆) = 𝑏)
12989, 97, 128syl2anc 586 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ({⟨𝑆, 𝑏⟩}‘𝑆) = 𝑏)
130127, 129eqtrd 2858 . . . . . . . . 9 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆) = 𝑏)
131130fveq2d 6676 . . . . . . . 8 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆)) = ((𝐿𝑆)‘𝑏))
132 fzonn0p1 13117 . . . . . . . . . . . 12 (𝑆 ∈ ℕ0𝑆 ∈ (0..^(𝑆 + 1)))
1335, 132syl 17 . . . . . . . . . . 11 (𝜑𝑆 ∈ (0..^(𝑆 + 1)))
134133ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑆 ∈ (0..^(𝑆 + 1)))
1351, 97sseldi 3967 . . . . . . . . . 10 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → 𝑏 ∈ ℕ)
136 fveq2 6672 . . . . . . . . . . . . 13 (𝑥 = 𝑆 → (𝐿𝑥) = (𝐿𝑆))
137136fveq1d 6674 . . . . . . . . . . . 12 (𝑥 = 𝑆 → ((𝐿𝑥)‘𝑦) = ((𝐿𝑆)‘𝑦))
138137eleq1d 2899 . . . . . . . . . . 11 (𝑥 = 𝑆 → (((𝐿𝑥)‘𝑦) ∈ ℂ ↔ ((𝐿𝑆)‘𝑦) ∈ ℂ))
139 fveq2 6672 . . . . . . . . . . . 12 (𝑦 = 𝑏 → ((𝐿𝑆)‘𝑦) = ((𝐿𝑆)‘𝑏))
140139eleq1d 2899 . . . . . . . . . . 11 (𝑦 = 𝑏 → (((𝐿𝑆)‘𝑦) ∈ ℂ ↔ ((𝐿𝑆)‘𝑏) ∈ ℂ))
141138, 140rspc2v 3635 . . . . . . . . . 10 ((𝑆 ∈ (0..^(𝑆 + 1)) ∧ 𝑏 ∈ ℕ) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑆)‘𝑏) ∈ ℂ))
142134, 135, 141syl2anc 586 . . . . . . . . 9 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (∀𝑥 ∈ (0..^(𝑆 + 1))∀𝑦 ∈ ℕ ((𝐿𝑥)‘𝑦) ∈ ℂ → ((𝐿𝑆)‘𝑏) ∈ ℂ))
143106, 142mpd 15 . . . . . . . 8 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝐿𝑆)‘𝑏) ∈ ℂ)
144131, 143eqeltrd 2915 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆)) ∈ ℂ)
14585, 86, 88, 89, 90, 119, 122, 144fprodsplitsn 15345 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∏𝑎 ∈ ((0..^𝑆) ∪ {𝑆})((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) · ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆))))
146105prodeq2dv 15279 . . . . . . 7 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)))
147146, 131oveq12d 7176 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) · ((𝐿𝑆)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑆))) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
14884, 145, 1473eqtrd 2862 . . . . 5 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
149148sumeq2dv 15062 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)) = Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
150 simpl 485 . . . . . . . 8 ((𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → 𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}))
151150fveq1d 6674 . . . . . . 7 ((𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → (𝑑𝑎) = ((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎))
152151fveq2d 6676 . . . . . 6 ((𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∧ 𝑎 ∈ (0..^(𝑆 + 1))) → ((𝐿𝑎)‘(𝑑𝑎)) = ((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)))
153152prodeq2dv 15279 . . . . 5 (𝑑 = (𝑒 ∪ {⟨𝑆, 𝑏⟩}) → ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = ∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)))
15425, 26, 5, 28, 6actfunsnf1o 31877 . . . . 5 ((𝜑𝑏 ∈ (1...𝑁)) → (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})):((1...𝑁)(repr‘𝑆)(𝑀𝑏))–1-1-onto→ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
1556a1i 11 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})) = (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩})))
156 simpr 487 . . . . . . 7 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑣 = 𝑒) → 𝑣 = 𝑒)
157156uneq1d 4140 . . . . . 6 ((((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) ∧ 𝑣 = 𝑒) → (𝑣 ∪ {⟨𝑆, 𝑏⟩}) = (𝑒 ∪ {⟨𝑆, 𝑏⟩}))
158 vex 3499 . . . . . . . 8 𝑒 ∈ V
159158, 64unex 7471 . . . . . . 7 (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∈ V
160159a1i 11 . . . . . 6 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → (𝑒 ∪ {⟨𝑆, 𝑏⟩}) ∈ V)
161155, 157, 93, 160fvmptd 6777 . . . . 5 (((𝜑𝑏 ∈ (1...𝑁)) ∧ 𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))) → ((𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))‘𝑒) = (𝑒 ∪ {⟨𝑆, 𝑏⟩}))
162153, 18, 154, 161, 80fsumf1o 15082 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → Σ𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘((𝑒 ∪ {⟨𝑆, 𝑏⟩})‘𝑎)))
163 simpl 485 . . . . . . . . . 10 ((𝑑 = 𝑒𝑎 ∈ (0..^𝑆)) → 𝑑 = 𝑒)
164163fveq1d 6674 . . . . . . . . 9 ((𝑑 = 𝑒𝑎 ∈ (0..^𝑆)) → (𝑑𝑎) = (𝑒𝑎))
165164fveq2d 6676 . . . . . . . 8 ((𝑑 = 𝑒𝑎 ∈ (0..^𝑆)) → ((𝐿𝑎)‘(𝑑𝑎)) = ((𝐿𝑎)‘(𝑒𝑎)))
166165prodeq2dv 15279 . . . . . . 7 (𝑑 = 𝑒 → ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) = ∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)))
167166oveq1d 7173 . . . . . 6 (𝑑 = 𝑒 → (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)) = (∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
168167cbvsumv 15055 . . . . 5 Σ𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)) = Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏))
169168a1i 11 . . . 4 ((𝜑𝑏 ∈ (1...𝑁)) → Σ𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)) = Σ𝑒 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑒𝑎)) · ((𝐿𝑆)‘𝑏)))
170149, 162, 1693eqtr4d 2868 . . 3 ((𝜑𝑏 ∈ (1...𝑁)) → Σ𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)))
171170sumeq2dv 15062 . 2 (𝜑 → Σ𝑏 ∈ (1...𝑁𝑑 ∈ ran (𝑣 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏)) ↦ (𝑣 ∪ {⟨𝑆, 𝑏⟩}))∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑏 ∈ (1...𝑁𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)))
1728, 82, 1713eqtrd 2862 1 (𝜑 → Σ𝑑 ∈ ((1...𝑁)(repr‘(𝑆 + 1))𝑀)∏𝑎 ∈ (0..^(𝑆 + 1))((𝐿𝑎)‘(𝑑𝑎)) = Σ𝑏 ∈ (1...𝑁𝑑 ∈ ((1...𝑁)(repr‘𝑆)(𝑀𝑏))(∏𝑎 ∈ (0..^𝑆)((𝐿𝑎)‘(𝑑𝑎)) · ((𝐿𝑆)‘𝑏)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  wrex 3141  {crab 3144  Vcvv 3496  cun 3936  cin 3937  wss 3938  c0 4293  {csn 4569  cop 4575   ciun 4921   class class class wbr 5068  cmpt 5148  ran crn 5558   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  m cmap 8408  Fincfn 8511  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  cle 10678  cmin 10872  cn 11640  0cn0 11900  cz 11984  cuz 12246  ...cfz 12895  ..^cfzo 13036  Σcsu 15044  cprod 15261  reprcrepr 31881
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-disj 5034  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-prod 15262  df-repr 31882
This theorem is referenced by:  breprexplemc  31905
  Copyright terms: Public domain W3C validator