Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  breprexpnat Structured version   Visualization version   GIF version

Theorem breprexpnat 30840
Description: Express the 𝑆 th power of the finite series in terms of the number of representations of integers 𝑚 as sums of 𝑆 terms of elements of 𝐴, bounded by 𝑁. Proposition of [Nathanson] p. 123. (Contributed by Thierry Arnoux, 11-Dec-2021.)
Hypotheses
Ref Expression
breprexp.n (𝜑𝑁 ∈ ℕ0)
breprexp.s (𝜑𝑆 ∈ ℕ0)
breprexp.z (𝜑𝑍 ∈ ℂ)
breprexpnat.a (𝜑𝐴 ⊆ ℕ)
breprexpnat.p 𝑃 = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)
breprexpnat.r 𝑅 = (#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚))
Assertion
Ref Expression
breprexpnat (𝜑 → (𝑃𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍𝑚)))
Distinct variable groups:   𝑚,𝑁   𝑆,𝑚   𝑚,𝑍   𝐴,𝑏,𝑚   𝑁,𝑏   𝑆,𝑏   𝑍,𝑏   𝜑,𝑏,𝑚
Allowed substitution hints:   𝑃(𝑚,𝑏)   𝑅(𝑚,𝑏)

Proof of Theorem breprexpnat
Dummy variables 𝑐 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breprexp.n . . . 4 (𝜑𝑁 ∈ ℕ0)
2 breprexp.s . . . 4 (𝜑𝑆 ∈ ℕ0)
3 breprexp.z . . . 4 (𝜑𝑍 ∈ ℂ)
4 fvex 6239 . . . . . 6 ((𝟭‘ℕ)‘𝐴) ∈ V
54fconst 6129 . . . . 5 ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶{((𝟭‘ℕ)‘𝐴)}
6 nnex 11064 . . . . . . . . 9 ℕ ∈ V
7 breprexpnat.a . . . . . . . . 9 (𝜑𝐴 ⊆ ℕ)
8 indf 30205 . . . . . . . . 9 ((ℕ ∈ V ∧ 𝐴 ⊆ ℕ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
96, 7, 8sylancr 696 . . . . . . . 8 (𝜑 → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
10 0cn 10070 . . . . . . . . 9 0 ∈ ℂ
11 ax-1cn 10032 . . . . . . . . 9 1 ∈ ℂ
12 prssi 4385 . . . . . . . . 9 ((0 ∈ ℂ ∧ 1 ∈ ℂ) → {0, 1} ⊆ ℂ)
1310, 11, 12mp2an 708 . . . . . . . 8 {0, 1} ⊆ ℂ
14 fss 6094 . . . . . . . 8 ((((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1} ∧ {0, 1} ⊆ ℂ) → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
159, 13, 14sylancl 695 . . . . . . 7 (𝜑 → ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
16 cnex 10055 . . . . . . . 8 ℂ ∈ V
1716, 6elmap 7928 . . . . . . 7 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑𝑚 ℕ) ↔ ((𝟭‘ℕ)‘𝐴):ℕ⟶ℂ)
1815, 17sylibr 224 . . . . . 6 (𝜑 → ((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑𝑚 ℕ))
194snss 4348 . . . . . 6 (((𝟭‘ℕ)‘𝐴) ∈ (ℂ ↑𝑚 ℕ) ↔ {((𝟭‘ℕ)‘𝐴)} ⊆ (ℂ ↑𝑚 ℕ))
2018, 19sylib 208 . . . . 5 (𝜑 → {((𝟭‘ℕ)‘𝐴)} ⊆ (ℂ ↑𝑚 ℕ))
21 fss 6094 . . . . 5 ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶{((𝟭‘ℕ)‘𝐴)} ∧ {((𝟭‘ℕ)‘𝐴)} ⊆ (ℂ ↑𝑚 ℕ)) → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
225, 20, 21sylancr 696 . . . 4 (𝜑 → ((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)}):(0..^𝑆)⟶(ℂ ↑𝑚 ℕ))
231, 2, 3, 22breprexp 30839 . . 3 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)))
244fvconst2 6510 . . . . . . . . . 10 (𝑎 ∈ (0..^𝑆) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
2524ad2antlr 763 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎) = ((𝟭‘ℕ)‘𝐴))
2625fveq1d 6231 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) = (((𝟭‘ℕ)‘𝐴)‘𝑏))
2726oveq1d 6705 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = ((((𝟭‘ℕ)‘𝐴)‘𝑏) · (𝑍𝑏)))
2827sumeq2dv 14477 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ (1...𝑁)((((𝟭‘ℕ)‘𝐴)‘𝑏) · (𝑍𝑏)))
296a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → ℕ ∈ V)
30 fzfi 12811 . . . . . . . 8 (1...𝑁) ∈ Fin
3130a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → (1...𝑁) ∈ Fin)
32 fz1ssnn 12410 . . . . . . . 8 (1...𝑁) ⊆ ℕ
3332a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → (1...𝑁) ⊆ ℕ)
347adantr 480 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → 𝐴 ⊆ ℕ)
353ad2antrr 762 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑍 ∈ ℂ)
36 nnssnn0 11333 . . . . . . . . . 10 ℕ ⊆ ℕ0
3732, 36sstri 3645 . . . . . . . . 9 (1...𝑁) ⊆ ℕ0
38 simpr 476 . . . . . . . . 9 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ (1...𝑁))
3937, 38sseldi 3634 . . . . . . . 8 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → 𝑏 ∈ ℕ0)
4035, 39expcld 13048 . . . . . . 7 (((𝜑𝑎 ∈ (0..^𝑆)) ∧ 𝑏 ∈ (1...𝑁)) → (𝑍𝑏) ∈ ℂ)
4129, 31, 33, 34, 40indsumin 30212 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)((((𝟭‘ℕ)‘𝐴)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ ((1...𝑁) ∩ 𝐴)(𝑍𝑏))
42 incom 3838 . . . . . . . 8 ((1...𝑁) ∩ 𝐴) = (𝐴 ∩ (1...𝑁))
4342a1i 11 . . . . . . 7 ((𝜑𝑎 ∈ (0..^𝑆)) → ((1...𝑁) ∩ 𝐴) = (𝐴 ∩ (1...𝑁)))
4443sumeq1d 14475 . . . . . 6 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ ((1...𝑁) ∩ 𝐴)(𝑍𝑏) = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏))
4528, 41, 443eqtrd 2689 . . . . 5 ((𝜑𝑎 ∈ (0..^𝑆)) → Σ𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏))
4645prodeq2dv 14697 . . . 4 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏))
47 fzofi 12813 . . . . . 6 (0..^𝑆) ∈ Fin
4847a1i 11 . . . . 5 (𝜑 → (0..^𝑆) ∈ Fin)
49 inss2 3867 . . . . . . . 8 (𝐴 ∩ (1...𝑁)) ⊆ (1...𝑁)
50 ssfi 8221 . . . . . . . 8 (((1...𝑁) ∈ Fin ∧ (𝐴 ∩ (1...𝑁)) ⊆ (1...𝑁)) → (𝐴 ∩ (1...𝑁)) ∈ Fin)
5130, 49, 50mp2an 708 . . . . . . 7 (𝐴 ∩ (1...𝑁)) ∈ Fin
5251a1i 11 . . . . . 6 (𝜑 → (𝐴 ∩ (1...𝑁)) ∈ Fin)
533adantr 480 . . . . . . 7 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → 𝑍 ∈ ℂ)
5449, 37sstri 3645 . . . . . . . 8 (𝐴 ∩ (1...𝑁)) ⊆ ℕ0
55 simpr 476 . . . . . . . 8 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → 𝑏 ∈ (𝐴 ∩ (1...𝑁)))
5654, 55sseldi 3634 . . . . . . 7 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → 𝑏 ∈ ℕ0)
5753, 56expcld 13048 . . . . . 6 ((𝜑𝑏 ∈ (𝐴 ∩ (1...𝑁))) → (𝑍𝑏) ∈ ℂ)
5852, 57fsumcl 14508 . . . . 5 (𝜑 → Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) ∈ ℂ)
59 fprodconst 14752 . . . . 5 (((0..^𝑆) ∈ Fin ∧ Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) ∈ ℂ) → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑(#‘(0..^𝑆))))
6048, 58, 59syl2anc 694 . . . 4 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑(#‘(0..^𝑆))))
61 hashfzo0 13255 . . . . . 6 (𝑆 ∈ ℕ0 → (#‘(0..^𝑆)) = 𝑆)
622, 61syl 17 . . . . 5 (𝜑 → (#‘(0..^𝑆)) = 𝑆)
6362oveq2d 6706 . . . 4 (𝜑 → (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑(#‘(0..^𝑆))) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆))
6446, 60, 633eqtrd 2689 . . 3 (𝜑 → ∏𝑎 ∈ (0..^𝑆𝑏 ∈ (1...𝑁)(((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘𝑏) · (𝑍𝑏)) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆))
6532a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ⊆ ℕ)
66 fzssz 12381 . . . . . . . 8 (0...(𝑆 · 𝑁)) ⊆ ℤ
67 simpr 476 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ (0...(𝑆 · 𝑁)))
6866, 67sseldi 3634 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℤ)
692adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑆 ∈ ℕ0)
7030a1i 11 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (1...𝑁) ∈ Fin)
7165, 68, 69, 70reprfi 30822 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((1...𝑁)(repr‘𝑆)𝑚) ∈ Fin)
723adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑍 ∈ ℂ)
73 fz0ssnn0 12473 . . . . . . . 8 (0...(𝑆 · 𝑁)) ⊆ ℕ0
7473, 67sseldi 3634 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝑚 ∈ ℕ0)
7572, 74expcld 13048 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (𝑍𝑚) ∈ ℂ)
7647a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (0..^𝑆) ∈ Fin)
779ad3antrrr 766 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → ((𝟭‘ℕ)‘𝐴):ℕ⟶{0, 1})
7832a1i 11 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (1...𝑁) ⊆ ℕ)
7968adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑚 ∈ ℤ)
8069adantr 480 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑆 ∈ ℕ0)
81 simpr 476 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚))
8278, 79, 80, 81reprf 30818 . . . . . . . . . . 11 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → 𝑐:(0..^𝑆)⟶(1...𝑁))
8382ffvelrnda 6399 . . . . . . . . . 10 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ (1...𝑁))
8432, 83sseldi 3634 . . . . . . . . 9 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (𝑐𝑎) ∈ ℕ)
8577, 84ffvelrnd 6400 . . . . . . . 8 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) ∈ {0, 1})
8613, 85sseldi 3634 . . . . . . 7 ((((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) ∧ 𝑎 ∈ (0..^𝑆)) → (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) ∈ ℂ)
8776, 86fprodcl 14726 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) ∈ ℂ)
8871, 75, 87fsummulc1 14561 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
897adantr 480 . . . . . . 7 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → 𝐴 ⊆ ℕ)
9089, 68, 69, 70, 65hashreprin 30826 . . . . . 6 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → (#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9190oveq1d 6705 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ((#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)) = (Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
9224fveq1d 6231 . . . . . . . . . 10 (𝑎 ∈ (0..^𝑆) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9392adantl 481 . . . . . . . . 9 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑎 ∈ (0..^𝑆)) → ((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = (((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9493prodeq2dv 14697 . . . . . . . 8 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9594adantr 480 . . . . . . 7 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → ∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) = ∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)))
9695oveq1d 6705 . . . . . 6 (((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) ∧ 𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)) → (∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = (∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
9796sumeq2dv 14477 . . . . 5 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)(((𝟭‘ℕ)‘𝐴)‘(𝑐𝑎)) · (𝑍𝑚)))
9888, 91, 973eqtr4rd 2696 . . . 4 ((𝜑𝑚 ∈ (0...(𝑆 · 𝑁))) → Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = ((#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
9998sumeq2dv 14477 . . 3 (𝜑 → Σ𝑚 ∈ (0...(𝑆 · 𝑁))Σ𝑐 ∈ ((1...𝑁)(repr‘𝑆)𝑚)(∏𝑎 ∈ (0..^𝑆)((((0..^𝑆) × {((𝟭‘ℕ)‘𝐴)})‘𝑎)‘(𝑐𝑎)) · (𝑍𝑚)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))((#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
10023, 64, 993eqtr3d 2693 . 2 (𝜑 → (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))((#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
101 breprexpnat.p . . 3 𝑃 = Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)
102101oveq1i 6700 . 2 (𝑃𝑆) = (Σ𝑏 ∈ (𝐴 ∩ (1...𝑁))(𝑍𝑏)↑𝑆)
103 breprexpnat.r . . . . 5 𝑅 = (#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚))
104103oveq1i 6700 . . . 4 (𝑅 · (𝑍𝑚)) = ((#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚))
105104a1i 11 . . 3 (𝑚 ∈ (0...(𝑆 · 𝑁)) → (𝑅 · (𝑍𝑚)) = ((#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚)))
106105sumeq2i 14473 . 2 Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍𝑚)) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))((#‘((𝐴 ∩ (1...𝑁))(repr‘𝑆)𝑚)) · (𝑍𝑚))
107100, 102, 1063eqtr4g 2710 1 (𝜑 → (𝑃𝑆) = Σ𝑚 ∈ (0...(𝑆 · 𝑁))(𝑅 · (𝑍𝑚)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1523  wcel 2030  Vcvv 3231  cin 3606  wss 3607  {csn 4210  {cpr 4212   × cxp 5141  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  cc 9972  0cc0 9974  1c1 9975   · cmul 9979  cn 11058  0cn0 11330  cz 11415  ...cfz 12364  ..^cfzo 12504  cexp 12900  #chash 13157  Σcsu 14460  cprod 14679  𝟭cind 30200  reprcrepr 30814
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-fal 1529  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-disj 4653  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-sup 8389  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-ico 12219  df-fz 12365  df-fzo 12505  df-seq 12842  df-exp 12901  df-hash 13158  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-clim 14263  df-sum 14461  df-prod 14680  df-ind 30201  df-repr 30815
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator