MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1indALTOLD Structured version   Visualization version   GIF version

Theorem brfi1indALTOLD 13092
Description: Obsolete version of brfi1indALT 13086 as of 28-Mar-2021. (Contributed by AV, 7-Jan-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
brfi1indOLD.r Rel 𝐺
brfi1indOLD.f 𝐹𝑈
brfi1indOLD.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
brfi1indOLD.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
brfi1indOLD.3 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
brfi1indOLD.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
brfi1indOLD.base ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)
brfi1indOLD.step ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
brfi1indALTOLD ((𝑉𝐺𝐸𝑉 ∈ Fin) → 𝜑)
Distinct variable groups:   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝑈(𝑦,𝑤,𝑣,𝑒,𝑓,𝑛)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem brfi1indALTOLD
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hashcl 12964 . . 3 (𝑉 ∈ Fin → (#‘𝑉) ∈ ℕ0)
2 df-clel 2605 . . . 4 ((#‘𝑉) ∈ ℕ0 ↔ ∃𝑛(𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0))
3 eqeq2 2620 . . . . . . . . . . . . . 14 (𝑥 = 0 → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = 0))
43anbi2d 735 . . . . . . . . . . . . 13 (𝑥 = 0 → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = 0)))
54imbi1d 329 . . . . . . . . . . . 12 (𝑥 = 0 → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)))
652albidv 1837 . . . . . . . . . . 11 (𝑥 = 0 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)))
7 eqeq2 2620 . . . . . . . . . . . . . 14 (𝑥 = 𝑦 → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = 𝑦))
87anbi2d 735 . . . . . . . . . . . . 13 (𝑥 = 𝑦 → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦)))
98imbi1d 329 . . . . . . . . . . . 12 (𝑥 = 𝑦 → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓)))
1092albidv 1837 . . . . . . . . . . 11 (𝑥 = 𝑦 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓)))
11 eqeq2 2620 . . . . . . . . . . . . . 14 (𝑥 = (𝑦 + 1) → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = (𝑦 + 1)))
1211anbi2d 735 . . . . . . . . . . . . 13 (𝑥 = (𝑦 + 1) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))))
1312imbi1d 329 . . . . . . . . . . . 12 (𝑥 = (𝑦 + 1) → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)))
14132albidv 1837 . . . . . . . . . . 11 (𝑥 = (𝑦 + 1) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)))
15 eqeq2 2620 . . . . . . . . . . . . . 14 (𝑥 = 𝑛 → ((#‘𝑣) = 𝑥 ↔ (#‘𝑣) = 𝑛))
1615anbi2d 735 . . . . . . . . . . . . 13 (𝑥 = 𝑛 → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛)))
1716imbi1d 329 . . . . . . . . . . . 12 (𝑥 = 𝑛 → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓)))
18172albidv 1837 . . . . . . . . . . 11 (𝑥 = 𝑛 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑥) → 𝜓) ↔ ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓)))
19 brfi1indOLD.base . . . . . . . . . . . 12 ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)
2019gen2 1713 . . . . . . . . . . 11 𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 0) → 𝜓)
21 breq12 4582 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝑣𝐺𝑒𝑤𝐺𝑓))
22 fveq2 6088 . . . . . . . . . . . . . . . . 17 (𝑣 = 𝑤 → (#‘𝑣) = (#‘𝑤))
2322eqeq1d 2611 . . . . . . . . . . . . . . . 16 (𝑣 = 𝑤 → ((#‘𝑣) = 𝑦 ↔ (#‘𝑤) = 𝑦))
2423adantr 479 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑤𝑒 = 𝑓) → ((#‘𝑣) = 𝑦 ↔ (#‘𝑤) = 𝑦))
2521, 24anbi12d 742 . . . . . . . . . . . . . 14 ((𝑣 = 𝑤𝑒 = 𝑓) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) ↔ (𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦)))
26 brfi1indOLD.2 . . . . . . . . . . . . . 14 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
2725, 26imbi12d 332 . . . . . . . . . . . . 13 ((𝑣 = 𝑤𝑒 = 𝑓) → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓) ↔ ((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃)))
2827cbval2v 2272 . . . . . . . . . . . 12 (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓) ↔ ∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃))
29 nn0re 11151 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0𝑦 ∈ ℝ)
30 1re 9896 . . . . . . . . . . . . . . . . . . . . 21 1 ∈ ℝ
3130a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → 1 ∈ ℝ)
32 nn0ge0 11168 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → 0 ≤ 𝑦)
33 0lt1 10402 . . . . . . . . . . . . . . . . . . . . 21 0 < 1
3433a1i 11 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ ℕ0 → 0 < 1)
3529, 31, 32, 34addgegt0d 10453 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ ℕ0 → 0 < (𝑦 + 1))
3635adantr 479 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0 ∧ (#‘𝑣) = (𝑦 + 1)) → 0 < (𝑦 + 1))
37 simpr 475 . . . . . . . . . . . . . . . . . 18 ((𝑦 ∈ ℕ0 ∧ (#‘𝑣) = (𝑦 + 1)) → (#‘𝑣) = (𝑦 + 1))
3836, 37breqtrrd 4605 . . . . . . . . . . . . . . . . 17 ((𝑦 ∈ ℕ0 ∧ (#‘𝑣) = (𝑦 + 1)) → 0 < (#‘𝑣))
3938adantrl 747 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))) → 0 < (#‘𝑣))
40 vex 3175 . . . . . . . . . . . . . . . . . . 19 𝑣 ∈ V
41 hashgt0elex 13005 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑣 ∈ V ∧ 0 < (#‘𝑣)) → ∃𝑛 𝑛𝑣)
42 brfi1indOLD.3 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
4340a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑣 ∈ V)
44 simpr 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑛𝑣)
45 simpl 471 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑦 ∈ ℕ0𝑛𝑣) → 𝑦 ∈ ℕ0)
46 brfi1indlem 13082 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 ((𝑣 ∈ V ∧ 𝑛𝑣𝑦 ∈ ℕ0) → ((#‘𝑣) = (𝑦 + 1) → (#‘(𝑣 ∖ {𝑛})) = 𝑦))
4743, 44, 45, 46syl3anc 1317 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((𝑦 ∈ ℕ0𝑛𝑣) → ((#‘𝑣) = (𝑦 + 1) → (#‘(𝑣 ∖ {𝑛})) = 𝑦))
4847imp 443 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (#‘(𝑣 ∖ {𝑛})) = 𝑦)
49 peano2nn0 11183 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑦 ∈ ℕ0 → (𝑦 + 1) ∈ ℕ0)
5049ad2antrr 757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑦 + 1) ∈ ℕ0)
5150ad2antlr 758 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑦 + 1) ∈ ℕ0)
52 simpr 475 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑣𝐺𝑒)
53 simplrr 796 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (#‘𝑣) = (𝑦 + 1))
54 simprlr 798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) → 𝑛𝑣)
5554adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → 𝑛𝑣)
5652, 53, 553jca 1234 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
5751, 56jca 552 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
58 difexg 4730 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 (𝑣 ∈ V → (𝑣 ∖ {𝑛}) ∈ V)
5940, 58ax-mp 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (𝑣 ∖ {𝑛}) ∈ V
60 brfi1indOLD.f . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 𝐹𝑈
61 breq12 4582 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝑤𝐺𝑓 ↔ (𝑣 ∖ {𝑛})𝐺𝐹))
62 fveq2 6088 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 (𝑤 = (𝑣 ∖ {𝑛}) → (#‘𝑤) = (#‘(𝑣 ∖ {𝑛})))
6362eqeq1d 2611 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 (𝑤 = (𝑣 ∖ {𝑛}) → ((#‘𝑤) = 𝑦 ↔ (#‘(𝑣 ∖ {𝑛})) = 𝑦))
6463adantr 479 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((#‘𝑤) = 𝑦 ↔ (#‘(𝑣 ∖ {𝑛})) = 𝑦))
6561, 64anbi12d 742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → ((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) ↔ ((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦)))
66 brfi1indOLD.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
6765, 66imbi12d 332 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ↔ (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)))
6867spc2gv 3268 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 (((𝑣 ∖ {𝑛}) ∈ V ∧ 𝐹𝑈) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒)))
6959, 60, 68mp2an 703 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → (((𝑣 ∖ {𝑛})𝐺𝐹 ∧ (#‘(𝑣 ∖ {𝑛})) = 𝑦) → 𝜒))
7069expdimp 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 ((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦𝜒))
7170ad2antrr 757 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦𝜒))
72 brfi1indOLD.step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
7357, 71, 72syl6an 565 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 ((((∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) ∧ (𝑣 ∖ {𝑛})𝐺𝐹) ∧ ((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1))) ∧ 𝑣𝐺𝑒) → ((#‘(𝑣 ∖ {𝑛})) = 𝑦𝜓))
7473exp41 635 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → ((#‘(𝑣 ∖ {𝑛})) = 𝑦𝜓)))))
7574com15 98 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → ((𝑣 ∖ {𝑛})𝐺𝐹 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7675com23 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 ((#‘(𝑣 ∖ {𝑛})) = 𝑦 → (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7748, 76mpcom 37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝑦 ∈ ℕ0𝑛𝑣) ∧ (#‘𝑣) = (𝑦 + 1)) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))
7877ex 448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝑦 ∈ ℕ0𝑛𝑣) → ((#‘𝑣) = (𝑦 + 1) → ((𝑣 ∖ {𝑛})𝐺𝐹 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
7978com23 83 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝑦 ∈ ℕ0𝑛𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8079ex 448 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑦 ∈ ℕ0 → (𝑛𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
8180com15 98 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑣𝐺𝑒 → (𝑛𝑣 → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
8281imp 443 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝑣𝐺𝑒𝑛𝑣) → ((𝑣 ∖ {𝑛})𝐺𝐹 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8342, 82mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑣𝐺𝑒𝑛𝑣) → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))
8483ex 448 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑣𝐺𝑒 → (𝑛𝑣 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8584com4l 89 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛𝑣 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8685exlimiv 1844 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑛 𝑛𝑣 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8741, 86syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((𝑣 ∈ V ∧ 0 < (#‘𝑣)) → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
8887ex 448 . . . . . . . . . . . . . . . . . . . 20 (𝑣 ∈ V → (0 < (#‘𝑣) → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (𝑣𝐺𝑒 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
8988com25 96 . . . . . . . . . . . . . . . . . . 19 (𝑣 ∈ V → (𝑣𝐺𝑒 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 < (#‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))))
9040, 89ax-mp 5 . . . . . . . . . . . . . . . . . 18 (𝑣𝐺𝑒 → ((#‘𝑣) = (𝑦 + 1) → (𝑦 ∈ ℕ0 → (0 < (#‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))))
9190imp 443 . . . . . . . . . . . . . . . . 17 ((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → (𝑦 ∈ ℕ0 → (0 < (#‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))))
9291impcom 444 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))) → (0 < (#‘𝑣) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓)))
9339, 92mpd 15 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1))) → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → 𝜓))
9493impancom 454 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℕ0 ∧ ∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃)) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓))
9594alrimivv 1842 . . . . . . . . . . . . 13 ((𝑦 ∈ ℕ0 ∧ ∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃)) → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓))
9695ex 448 . . . . . . . . . . . 12 (𝑦 ∈ ℕ0 → (∀𝑤𝑓((𝑤𝐺𝑓 ∧ (#‘𝑤) = 𝑦) → 𝜃) → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)))
9728, 96syl5bi 230 . . . . . . . . . . 11 (𝑦 ∈ ℕ0 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑦) → 𝜓) → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1)) → 𝜓)))
986, 10, 14, 18, 20, 97nn0ind 11307 . . . . . . . . . 10 (𝑛 ∈ ℕ0 → ∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓))
99 brfi1indOLD.r . . . . . . . . . . . . . 14 Rel 𝐺
10099brrelexi 5072 . . . . . . . . . . . . 13 (𝑉𝐺𝐸𝑉 ∈ V)
10199brrelex2i 5073 . . . . . . . . . . . . 13 (𝑉𝐺𝐸𝐸 ∈ V)
102100, 101jca 552 . . . . . . . . . . . 12 (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
103 breq12 4582 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝑣𝐺𝑒𝑉𝐺𝐸))
104 fveq2 6088 . . . . . . . . . . . . . . . . . . 19 (𝑣 = 𝑉 → (#‘𝑣) = (#‘𝑉))
105104eqeq1d 2611 . . . . . . . . . . . . . . . . . 18 (𝑣 = 𝑉 → ((#‘𝑣) = 𝑛 ↔ (#‘𝑉) = 𝑛))
106105adantr 479 . . . . . . . . . . . . . . . . 17 ((𝑣 = 𝑉𝑒 = 𝐸) → ((#‘𝑣) = 𝑛 ↔ (#‘𝑉) = 𝑛))
107103, 106anbi12d 742 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑉𝑒 = 𝐸) → ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) ↔ (𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛)))
108 brfi1indOLD.1 . . . . . . . . . . . . . . . 16 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
109107, 108imbi12d 332 . . . . . . . . . . . . . . 15 ((𝑣 = 𝑉𝑒 = 𝐸) → (((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) ↔ ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → 𝜑)))
110109spc2gv 3268 . . . . . . . . . . . . . 14 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → 𝜑)))
111110com23 83 . . . . . . . . . . . . 13 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑)))
112111expd 450 . . . . . . . . . . . 12 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝐺𝐸 → ((#‘𝑉) = 𝑛 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑))))
113102, 112mpcom 37 . . . . . . . . . . 11 (𝑉𝐺𝐸 → ((#‘𝑉) = 𝑛 → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑)))
114113imp 443 . . . . . . . . . 10 ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → (∀𝑣𝑒((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝑛) → 𝜓) → 𝜑))
11598, 114syl5 33 . . . . . . . . 9 ((𝑉𝐺𝐸 ∧ (#‘𝑉) = 𝑛) → (𝑛 ∈ ℕ0𝜑))
116115expcom 449 . . . . . . . 8 ((#‘𝑉) = 𝑛 → (𝑉𝐺𝐸 → (𝑛 ∈ ℕ0𝜑)))
117116com23 83 . . . . . . 7 ((#‘𝑉) = 𝑛 → (𝑛 ∈ ℕ0 → (𝑉𝐺𝐸𝜑)))
118117eqcoms 2617 . . . . . 6 (𝑛 = (#‘𝑉) → (𝑛 ∈ ℕ0 → (𝑉𝐺𝐸𝜑)))
119118imp 443 . . . . 5 ((𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸𝜑))
120119exlimiv 1844 . . . 4 (∃𝑛(𝑛 = (#‘𝑉) ∧ 𝑛 ∈ ℕ0) → (𝑉𝐺𝐸𝜑))
1212, 120sylbi 205 . . 3 ((#‘𝑉) ∈ ℕ0 → (𝑉𝐺𝐸𝜑))
1221, 121syl 17 . 2 (𝑉 ∈ Fin → (𝑉𝐺𝐸𝜑))
123122impcom 444 1 ((𝑉𝐺𝐸𝑉 ∈ Fin) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030  wal 1472   = wceq 1474  wex 1694  wcel 1976  Vcvv 3172  cdif 3536  {csn 4124   class class class wbr 4577  Rel wrel 5033  cfv 5790  (class class class)co 6527  Fincfn 7819  cr 9792  0cc0 9793  1c1 9794   + caddc 9796   < clt 9931  0cn0 11142  #chash 12937
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-card 8626  df-cda 8851  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-nn 10871  df-n0 11143  df-z 11214  df-uz 11523  df-fz 12156  df-hash 12938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator