MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfi1uzind Structured version   Visualization version   GIF version

Theorem brfi1uzind 13214
Description: Properties of a binary relation with a finite first component with at least L elements, proven by finite induction on the size of the first component. This theorem can be applied for graphs (as binary relation between the set of vertices and an edge function) with a finite number of vertices, usually with 𝐿 = 0 (see brfi1ind 13215) or 𝐿 = 1. (Contributed by Alexander van der Vekens, 7-Jan-2018.) (Proof shortened by AV, 23-Oct-2020.) (Revised by AV, 28-Mar-2021.)
Hypotheses
Ref Expression
brfi1uzind.r Rel 𝐺
brfi1uzind.f 𝐹 ∈ V
brfi1uzind.l 𝐿 ∈ ℕ0
brfi1uzind.1 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
brfi1uzind.2 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
brfi1uzind.3 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
brfi1uzind.4 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
brfi1uzind.base ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝐿) → 𝜓)
brfi1uzind.step ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
Assertion
Ref Expression
brfi1uzind ((𝑉𝐺𝐸𝑉 ∈ Fin ∧ 𝐿 ≤ (#‘𝑉)) → 𝜑)
Distinct variable groups:   𝑒,𝐸,𝑛,𝑣   𝑓,𝐹,𝑤   𝑒,𝐺,𝑓,𝑛,𝑣,𝑤,𝑦   𝑒,𝐿,𝑛,𝑣,𝑦   𝑒,𝑉,𝑛,𝑣   𝜓,𝑓,𝑛,𝑤,𝑦   𝜃,𝑒,𝑛,𝑣   𝜒,𝑓,𝑤   𝜑,𝑒,𝑛,𝑣
Allowed substitution hints:   𝜑(𝑦,𝑤,𝑓)   𝜓(𝑣,𝑒)   𝜒(𝑦,𝑣,𝑒,𝑛)   𝜃(𝑦,𝑤,𝑓)   𝐸(𝑦,𝑤,𝑓)   𝐹(𝑦,𝑣,𝑒,𝑛)   𝐿(𝑤,𝑓)   𝑉(𝑦,𝑤,𝑓)

Proof of Theorem brfi1uzind
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 brfi1uzind.r . . . 4 Rel 𝐺
2 brrelex12 5120 . . . 4 ((Rel 𝐺𝑉𝐺𝐸) → (𝑉 ∈ V ∧ 𝐸 ∈ V))
31, 2mpan 705 . . 3 (𝑉𝐺𝐸 → (𝑉 ∈ V ∧ 𝐸 ∈ V))
4 simpl 473 . . . . 5 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → 𝑉 ∈ V)
5 simplr 791 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → 𝐸 ∈ V)
6 breq12 4623 . . . . . . 7 ((𝑎 = 𝑉𝑏 = 𝐸) → (𝑎𝐺𝑏𝑉𝐺𝐸))
76adantll 749 . . . . . 6 ((((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) ∧ 𝑏 = 𝐸) → (𝑎𝐺𝑏𝑉𝐺𝐸))
85, 7sbcied 3459 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝑎 = 𝑉) → ([𝐸 / 𝑏]𝑎𝐺𝑏𝑉𝐺𝐸))
94, 8sbcied 3459 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → ([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏𝑉𝐺𝐸))
109biimprcd 240 . . 3 (𝑉𝐺𝐸 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) → [𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏))
113, 10mpd 15 . 2 (𝑉𝐺𝐸[𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏)
12 brfi1uzind.f . . 3 𝐹 ∈ V
13 brfi1uzind.l . . 3 𝐿 ∈ ℕ0
14 brfi1uzind.1 . . 3 ((𝑣 = 𝑉𝑒 = 𝐸) → (𝜓𝜑))
15 brfi1uzind.2 . . 3 ((𝑣 = 𝑤𝑒 = 𝑓) → (𝜓𝜃))
16 vex 3194 . . . . 5 𝑣 ∈ V
17 vex 3194 . . . . 5 𝑒 ∈ V
18 breq12 4623 . . . . 5 ((𝑎 = 𝑣𝑏 = 𝑒) → (𝑎𝐺𝑏𝑣𝐺𝑒))
1916, 17, 18sbc2ie 3492 . . . 4 ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏𝑣𝐺𝑒)
20 brfi1uzind.3 . . . . 5 ((𝑣𝐺𝑒𝑛𝑣) → (𝑣 ∖ {𝑛})𝐺𝐹)
21 difexg 4773 . . . . . . 7 (𝑣 ∈ V → (𝑣 ∖ {𝑛}) ∈ V)
2216, 21ax-mp 5 . . . . . 6 (𝑣 ∖ {𝑛}) ∈ V
2312elexi 3204 . . . . . 6 𝐹 ∈ V
24 breq12 4623 . . . . . 6 ((𝑎 = (𝑣 ∖ {𝑛}) ∧ 𝑏 = 𝐹) → (𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹))
2522, 23, 24sbc2ie 3492 . . . . 5 ([(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏 ↔ (𝑣 ∖ {𝑛})𝐺𝐹)
2620, 25sylibr 224 . . . 4 ((𝑣𝐺𝑒𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏)
2719, 26sylanb 489 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏𝑛𝑣) → [(𝑣 ∖ {𝑛}) / 𝑎][𝐹 / 𝑏]𝑎𝐺𝑏)
28 brfi1uzind.4 . . 3 ((𝑤 = (𝑣 ∖ {𝑛}) ∧ 𝑓 = 𝐹) → (𝜃𝜒))
29 brfi1uzind.base . . . 4 ((𝑣𝐺𝑒 ∧ (#‘𝑣) = 𝐿) → 𝜓)
3019, 29sylanb 489 . . 3 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (#‘𝑣) = 𝐿) → 𝜓)
31193anbi1i 1251 . . . . 5 (([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣) ↔ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣))
3231anbi2i 729 . . . 4 (((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ↔ ((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)))
33 brfi1uzind.step . . . 4 ((((𝑦 + 1) ∈ ℕ0 ∧ (𝑣𝐺𝑒 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3432, 33sylanb 489 . . 3 ((((𝑦 + 1) ∈ ℕ0 ∧ ([𝑣 / 𝑎][𝑒 / 𝑏]𝑎𝐺𝑏 ∧ (#‘𝑣) = (𝑦 + 1) ∧ 𝑛𝑣)) ∧ 𝜒) → 𝜓)
3512, 13, 14, 15, 27, 28, 30, 34fi1uzind 13213 . 2 (([𝑉 / 𝑎][𝐸 / 𝑏]𝑎𝐺𝑏𝑉 ∈ Fin ∧ 𝐿 ≤ (#‘𝑉)) → 𝜑)
3611, 35syl3an1 1356 1 ((𝑉𝐺𝐸𝑉 ∈ Fin ∧ 𝐿 ≤ (#‘𝑉)) → 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1992  Vcvv 3191  [wsbc 3422  cdif 3557  {csn 4153   class class class wbr 4618  Rel wrel 5084  cfv 5850  (class class class)co 6605  Fincfn 7900  1c1 9882   + caddc 9884  cle 10020  0cn0 11237  #chash 13054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-xnn0 11309  df-z 11323  df-uz 11632  df-fz 12266  df-hash 13055
This theorem is referenced by:  brfi1ind  13215
  Copyright terms: Public domain W3C validator