Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopabrbr Structured version   Visualization version   GIF version

Theorem brfvopabrbr 6246
 Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 6662. (Contributed by AV, 29-Oct-2021.)
Hypotheses
Ref Expression
brfvopabrbr.1 (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)}
brfvopabrbr.2 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
brfvopabrbr.3 Rel (𝐵𝑍)
Assertion
Ref Expression
brfvopabrbr (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem brfvopabrbr
StepHypRef Expression
1 brne0 4672 . . . 4 (𝑋(𝐴𝑍)𝑌 → (𝐴𝑍) ≠ ∅)
2 fvprc 6152 . . . . 5 𝑍 ∈ V → (𝐴𝑍) = ∅)
32necon1ai 2817 . . . 4 ((𝐴𝑍) ≠ ∅ → 𝑍 ∈ V)
41, 3syl 17 . . 3 (𝑋(𝐴𝑍)𝑌𝑍 ∈ V)
5 brfvopabrbr.1 . . . . 5 (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)}
65relopabi 5215 . . . 4 Rel (𝐴𝑍)
76brrelexi 5128 . . 3 (𝑋(𝐴𝑍)𝑌𝑋 ∈ V)
86brrelex2i 5129 . . 3 (𝑋(𝐴𝑍)𝑌𝑌 ∈ V)
94, 7, 83jca 1240 . 2 (𝑋(𝐴𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
10 brne0 4672 . . . . 5 (𝑋(𝐵𝑍)𝑌 → (𝐵𝑍) ≠ ∅)
11 fvprc 6152 . . . . . 6 𝑍 ∈ V → (𝐵𝑍) = ∅)
1211necon1ai 2817 . . . . 5 ((𝐵𝑍) ≠ ∅ → 𝑍 ∈ V)
1310, 12syl 17 . . . 4 (𝑋(𝐵𝑍)𝑌𝑍 ∈ V)
14 brfvopabrbr.3 . . . . 5 Rel (𝐵𝑍)
1514brrelexi 5128 . . . 4 (𝑋(𝐵𝑍)𝑌𝑋 ∈ V)
1614brrelex2i 5129 . . . 4 (𝑋(𝐵𝑍)𝑌𝑌 ∈ V)
1713, 15, 163jca 1240 . . 3 (𝑋(𝐵𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
1817adantr 481 . 2 ((𝑋(𝐵𝑍)𝑌𝜓) → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
195a1i 11 . . 3 (𝑍 ∈ V → (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)})
20 brfvopabrbr.2 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
2119, 20rbropap 4986 . 2 ((𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓)))
229, 18, 21pm5.21nii 368 1 (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1987   ≠ wne 2790  Vcvv 3190  ∅c0 3897   class class class wbr 4623  {copab 4682  Rel wrel 5089  ‘cfv 5857 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-xp 5090  df-rel 5091  df-iota 5820  df-fv 5865 This theorem is referenced by:  istrl  26496  ispth  26522  isspth  26523  isclwlk  26572  iscrct  26588  iscycl  26589  iseupth  26961
 Copyright terms: Public domain W3C validator