MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brfvopabrbr Structured version   Visualization version   GIF version

Theorem brfvopabrbr 6759
Description: The binary relation of a function value which is an ordered-pair class abstraction of a restricted binary relation is the restricted binary relation. The first hypothesis can often be obtained by using fvmptopab 7203. (Contributed by AV, 29-Oct-2021.)
Hypotheses
Ref Expression
brfvopabrbr.1 (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)}
brfvopabrbr.2 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
brfvopabrbr.3 Rel (𝐵𝑍)
Assertion
Ref Expression
brfvopabrbr (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓))
Distinct variable groups:   𝑥,𝐵,𝑦   𝑥,𝑋,𝑦   𝑥,𝑌,𝑦   𝑥,𝑍,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem brfvopabrbr
StepHypRef Expression
1 brne0 5108 . . . 4 (𝑋(𝐴𝑍)𝑌 → (𝐴𝑍) ≠ ∅)
2 fvprc 6657 . . . . 5 𝑍 ∈ V → (𝐴𝑍) = ∅)
32necon1ai 3043 . . . 4 ((𝐴𝑍) ≠ ∅ → 𝑍 ∈ V)
41, 3syl 17 . . 3 (𝑋(𝐴𝑍)𝑌𝑍 ∈ V)
5 brfvopabrbr.1 . . . . 5 (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)}
65relopabi 5688 . . . 4 Rel (𝐴𝑍)
76brrelex1i 5602 . . 3 (𝑋(𝐴𝑍)𝑌𝑋 ∈ V)
86brrelex2i 5603 . . 3 (𝑋(𝐴𝑍)𝑌𝑌 ∈ V)
94, 7, 83jca 1124 . 2 (𝑋(𝐴𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
10 brne0 5108 . . . . 5 (𝑋(𝐵𝑍)𝑌 → (𝐵𝑍) ≠ ∅)
11 fvprc 6657 . . . . . 6 𝑍 ∈ V → (𝐵𝑍) = ∅)
1211necon1ai 3043 . . . . 5 ((𝐵𝑍) ≠ ∅ → 𝑍 ∈ V)
1310, 12syl 17 . . . 4 (𝑋(𝐵𝑍)𝑌𝑍 ∈ V)
14 brfvopabrbr.3 . . . . 5 Rel (𝐵𝑍)
1514brrelex1i 5602 . . . 4 (𝑋(𝐵𝑍)𝑌𝑋 ∈ V)
1614brrelex2i 5603 . . . 4 (𝑋(𝐵𝑍)𝑌𝑌 ∈ V)
1713, 15, 163jca 1124 . . 3 (𝑋(𝐵𝑍)𝑌 → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
1817adantr 483 . 2 ((𝑋(𝐵𝑍)𝑌𝜓) → (𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V))
195a1i 11 . . 3 (𝑍 ∈ V → (𝐴𝑍) = {⟨𝑥, 𝑦⟩ ∣ (𝑥(𝐵𝑍)𝑦𝜑)})
20 brfvopabrbr.2 . . 3 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
2119, 20rbropap 5442 . 2 ((𝑍 ∈ V ∧ 𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓)))
229, 18, 21pm5.21nii 382 1 (𝑋(𝐴𝑍)𝑌 ↔ (𝑋(𝐵𝑍)𝑌𝜓))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  c0 4290   class class class wbr 5058  {copab 5120  Rel wrel 5554  cfv 6349
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-xp 5555  df-rel 5556  df-iota 6308  df-fv 6357
This theorem is referenced by:  istrl  27472  ispth  27498  isspth  27499  isclwlk  27548  iscrct  27565  iscycl  27566  iseupth  27974
  Copyright terms: Public domain W3C validator