MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brgic Structured version   Visualization version   GIF version

Theorem brgic 17632
Description: The relation "is isomorphic to" for groups. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Assertion
Ref Expression
brgic (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)

Proof of Theorem brgic
StepHypRef Expression
1 df-gic 17623 . 2 𝑔 = ( GrpIso “ (V ∖ 1𝑜))
2 gimfn 17624 . 2 GrpIso Fn (Grp × Grp)
31, 2brwitnlem 7532 1 (𝑅𝑔 𝑆 ↔ (𝑅 GrpIso 𝑆) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wne 2790  c0 3891   class class class wbr 4613   × cxp 5072  (class class class)co 6604  Grpcgrp 17343   GrpIso cgim 17620  𝑔 cgic 17621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-1o 7505  df-gim 17622  df-gic 17623
This theorem is referenced by:  brgici  17633  giclcl  17635  gicrcl  17636  gicsym  17637  gictr  17638  gicen  17641  gicsubgen  17642  giccyg  18222  gicabl  37146
  Copyright terms: Public domain W3C validator