![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brinxp | Structured version Visualization version GIF version |
Description: Intersection of binary relation with Cartesian product. (Contributed by NM, 9-Mar-1997.) |
Ref | Expression |
---|---|
brinxp | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | brinxp2 5337 | . . 3 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ (𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵)) | |
2 | df-3an 1074 | . . 3 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷 ∧ 𝐴𝑅𝐵) ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) | |
3 | 1, 2 | bitri 264 | . 2 ⊢ (𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵 ↔ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) ∧ 𝐴𝑅𝐵)) |
4 | 3 | baibr 983 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → (𝐴𝑅𝐵 ↔ 𝐴(𝑅 ∩ (𝐶 × 𝐷))𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 ∩ cin 3714 class class class wbr 4804 × cxp 5264 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 |
This theorem is referenced by: poinxp 5339 soinxp 5340 frinxp 5341 seinxp 5342 exfo 6541 isores2 6747 ltpiord 9921 ordpinq 9977 pwsleval 16375 tsrss 17444 ordtrest 21228 ordtrest2lem 21229 ordtrestNEW 30297 ordtrest2NEWlem 30298 |
Copyright terms: Public domain | W3C validator |