Mathbox for Scott Fenton < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  broutsideof3 Structured version   Visualization version   GIF version

Theorem broutsideof3 31910
 Description: Characterization of outsideness in terms of relationship to a fourth point. Theorem 6.3 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
broutsideof3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
Distinct variable groups:   𝑁,𝑐   𝐴,𝑐   𝐵,𝑐   𝑃,𝑐

Proof of Theorem broutsideof3
StepHypRef Expression
1 broutsideof2 31906 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
2 simpl 473 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
3 simpr3 1067 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
4 simpr1 1065 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
5 btwndiff 31811 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))
62, 3, 4, 5syl3anc 1323 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))
76adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))
8 df-3an 1038 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ↔ ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)))
9 3anass 1040 . . . . . . . . . . . 12 ((((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) ↔ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ (𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)))
10 simpr3 1067 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃𝑐)
1110necomd 2845 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑐𝑃)
12 simp1 1059 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
13 simp23 1094 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
14 simp22 1093 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
15 simp21 1092 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
16 simp3 1061 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑐 ∈ (𝔼‘𝑁))
17 simpr1r 1117 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
1812, 14, 15, 13, 17btwncomand 31799 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐴 Btwn ⟨𝐵, 𝑃⟩)
19 simpr2 1066 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐵, 𝑐⟩)
2012, 13, 14, 15, 16, 18, 19btwnexch3and 31805 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐴, 𝑐⟩)
2111, 20, 193jca 1240 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐)) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
228, 9, 21syl2anbr 497 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ∧ (𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐))) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
2322expr 642 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ((𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
2423an32s 845 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
2524reximdva 3012 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → (∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐵, 𝑐⟩ ∧ 𝑃𝑐) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
267, 25mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
2726expr 642 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
28 simpr2 1066 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
29 btwndiff 31811 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))
302, 28, 4, 29syl3anc 1323 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))
3130adantr 481 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))
32 3anass 1040 . . . . . . . . . . . 12 ((((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) ↔ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)))
33 simpr3 1067 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃𝑐)
3433necomd 2845 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑐𝑃)
35 simpr2 1066 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐴, 𝑐⟩)
36 simpr1r 1117 . . . . . . . . . . . . . . 15 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
3712, 13, 15, 14, 36btwncomand 31799 . . . . . . . . . . . . . 14 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝐵 Btwn ⟨𝐴, 𝑃⟩)
3812, 14, 13, 15, 16, 37, 35btwnexch3and 31805 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → 𝑃 Btwn ⟨𝐵, 𝑐⟩)
3934, 35, 383jca 1240 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ 𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐)) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
408, 32, 39syl2anbr 497 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ∧ (𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐))) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
4140expr 642 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ((𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4241an32s 845 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) → (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4342reximdva 3012 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (∃𝑐 ∈ (𝔼‘𝑁)(𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃𝑐) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4431, 43mpd 15 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))
4544expr 642 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
4627, 45jaod 395 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
47 simprr1 1107 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑐𝑃)
48 simpll 789 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
49 simplr1 1101 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑃 ∈ (𝔼‘𝑁))
50 simplr2 1102 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
51 simpr 477 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝑐 ∈ (𝔼‘𝑁))
52 simprr2 1108 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝐴, 𝑐⟩)
5348, 49, 50, 51, 52btwncomand 31799 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝑐, 𝐴⟩)
54 simplr3 1103 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
55 simprr3 1109 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝐵, 𝑐⟩)
5648, 49, 54, 51, 55btwncomand 31799 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → 𝑃 Btwn ⟨𝑐, 𝐵⟩)
57 btwnconn2 31886 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝑐 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝑐𝑃𝑃 Btwn ⟨𝑐, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝑐, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
5848, 51, 49, 50, 54, 57syl122anc 1332 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑐𝑃𝑃 Btwn ⟨𝑐, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝑐, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
5958adantr 481 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → ((𝑐𝑃𝑃 Btwn ⟨𝑐, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝑐, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6047, 53, 56, 59mp3and 1424 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ ((𝐴𝑃𝐵𝑃) ∧ (𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
6160expr 642 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ 𝑐 ∈ (𝔼‘𝑁)) ∧ (𝐴𝑃𝐵𝑃)) → ((𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6261an32s 845 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) ∧ 𝑐 ∈ (𝔼‘𝑁)) → ((𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6362rexlimdva 3025 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → (∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
6446, 63impbid 202 . . . 4 (((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) ∧ (𝐴𝑃𝐵𝑃)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ↔ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
6564pm5.32da 672 . . 3 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
66 df-3an 1038 . . 3 ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
67 df-3an 1038 . . 3 ((𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)) ↔ ((𝐴𝑃𝐵𝑃) ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩)))
6865, 66, 673bitr4g 303 . 2 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
691, 68bitrd 268 1 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ ∃𝑐 ∈ (𝔼‘𝑁)(𝑐𝑃𝑃 Btwn ⟨𝐴, 𝑐⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝑐⟩))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 383   ∧ wa 384   ∧ w3a 1036   ∈ wcel 1987   ≠ wne 2790  ∃wrex 2908  ⟨cop 4159   class class class wbr 4618  ‘cfv 5852  ℕcn 10972  𝔼cee 25685   Btwn cbtwn 25686  OutsideOfcoutsideof 31903 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909  ax-inf2 8490  ax-cnex 9944  ax-resscn 9945  ax-1cn 9946  ax-icn 9947  ax-addcl 9948  ax-addrcl 9949  ax-mulcl 9950  ax-mulrcl 9951  ax-mulcom 9952  ax-addass 9953  ax-mulass 9954  ax-distr 9955  ax-i2m1 9956  ax-1ne0 9957  ax-1rid 9958  ax-rnegex 9959  ax-rrecex 9960  ax-cnre 9961  ax-pre-lttri 9962  ax-pre-lttrn 9963  ax-pre-ltadd 9964  ax-pre-mulgt0 9965  ax-pre-sup 9966 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-csb 3519  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-pss 3575  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5644  df-ord 5690  df-on 5691  df-lim 5692  df-suc 5693  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-f1 5857  df-fo 5858  df-f1o 5859  df-fv 5860  df-isom 5861  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-om 7020  df-1st 7120  df-2nd 7121  df-wrecs 7359  df-recs 7420  df-rdg 7458  df-1o 7512  df-oadd 7516  df-er 7694  df-map 7811  df-en 7908  df-dom 7909  df-sdom 7910  df-fin 7911  df-sup 8300  df-oi 8367  df-card 8717  df-pnf 10028  df-mnf 10029  df-xr 10030  df-ltxr 10031  df-le 10032  df-sub 10220  df-neg 10221  df-div 10637  df-nn 10973  df-2 11031  df-3 11032  df-n0 11245  df-z 11330  df-uz 11640  df-rp 11785  df-ico 12131  df-icc 12132  df-fz 12277  df-fzo 12415  df-seq 12750  df-exp 12809  df-hash 13066  df-cj 13781  df-re 13782  df-im 13783  df-sqrt 13917  df-abs 13918  df-clim 14161  df-sum 14359  df-ee 25688  df-btwn 25689  df-cgr 25690  df-ofs 31767  df-colinear 31823  df-ifs 31824  df-cgr3 31825  df-fs 31826  df-outsideof 31904 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator