MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brovex Structured version   Visualization version   GIF version

Theorem brovex 7468
Description: A binary relation of the value of an operation given by the "maps to" notation. (Contributed by Alexander van der Vekens, 21-Oct-2017.)
Hypotheses
Ref Expression
brovex.1 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶)
brovex.2 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸))
Assertion
Ref Expression
brovex (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑃(𝑥,𝑦)   𝐸(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑂(𝑥,𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem brovex
StepHypRef Expression
1 df-br 4761 . . 3 (𝐹(𝑉𝑂𝐸)𝑃 ↔ ⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸))
2 ne0i 4029 . . . 4 (⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸) → (𝑉𝑂𝐸) ≠ ∅)
3 brovex.1 . . . . . 6 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶)
43mpt2ndm0 6992 . . . . 5 (¬ (𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝑉𝑂𝐸) = ∅)
54necon1ai 2923 . . . 4 ((𝑉𝑂𝐸) ≠ ∅ → (𝑉 ∈ V ∧ 𝐸 ∈ V))
6 brovex.2 . . . . . . 7 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → Rel (𝑉𝑂𝐸))
7 brrelex12 5264 . . . . . . 7 ((Rel (𝑉𝑂𝐸) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
86, 7sylan 489 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → (𝐹 ∈ V ∧ 𝑃 ∈ V))
9 id 22 . . . . . 6 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
108, 9syldan 488 . . . . 5 (((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ 𝐹(𝑉𝑂𝐸)𝑃) → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
1110ex 449 . . . 4 ((𝑉 ∈ V ∧ 𝐸 ∈ V) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
122, 5, 113syl 18 . . 3 (⟨𝐹, 𝑃⟩ ∈ (𝑉𝑂𝐸) → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
131, 12sylbi 207 . 2 (𝐹(𝑉𝑂𝐸)𝑃 → (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V))))
1413pm2.43i 52 1 (𝐹(𝑉𝑂𝐸)𝑃 → ((𝑉 ∈ V ∧ 𝐸 ∈ V) ∧ (𝐹 ∈ V ∧ 𝑃 ∈ V)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383   = wceq 1596  wcel 2103  wne 2896  Vcvv 3304  c0 4023  cop 4291   class class class wbr 4760  Rel wrel 5223  (class class class)co 6765  cmpt2 6767
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-rab 3023  df-v 3306  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-br 4761  df-opab 4821  df-xp 5224  df-rel 5225  df-dm 5228  df-iota 5964  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770
This theorem is referenced by:  brovmpt2ex  7469
  Copyright terms: Public domain W3C validator