Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brrestrict Structured version   Visualization version   GIF version

Theorem brrestrict 31733
Description: The binary relationship form of the Restrict function. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brrestrict.1 𝐴 ∈ V
brrestrict.2 𝐵 ∈ V
brrestrict.3 𝐶 ∈ V
Assertion
Ref Expression
brrestrict (⟨𝐴, 𝐵⟩Restrict𝐶𝐶 = (𝐴𝐵))

Proof of Theorem brrestrict
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 4898 . . . . 5 𝐴, 𝐵⟩ ∈ V
2 brrestrict.3 . . . . 5 𝐶 ∈ V
31, 2brco 5257 . . . 4 (⟨𝐴, 𝐵⟩(Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))𝐶 ↔ ∃𝑥(⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥𝑥Cap𝐶))
41brtxp2 31665 . . . . . . 7 (⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥 ↔ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏))
5 3anrot 1041 . . . . . . . . 9 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏) ↔ (⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏𝑥 = ⟨𝑎, 𝑏⟩))
6 brrestrict.1 . . . . . . . . . . 11 𝐴 ∈ V
7 brrestrict.2 . . . . . . . . . . 11 𝐵 ∈ V
8 vex 3192 . . . . . . . . . . 11 𝑎 ∈ V
96, 7, 8br1steq 31409 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩1st 𝑎𝑎 = 𝐴)
10 vex 3192 . . . . . . . . . . . 12 𝑏 ∈ V
111, 10brco 5257 . . . . . . . . . . 11 (⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏 ↔ ∃𝑥(⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥Cart𝑏))
121brtxp2 31665 . . . . . . . . . . . . . . 15 (⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥 ↔ ∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏))
13 3anrot 1041 . . . . . . . . . . . . . . . . 17 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏) ↔ (⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏𝑥 = ⟨𝑎, 𝑏⟩))
146, 7, 8br2ndeq 31410 . . . . . . . . . . . . . . . . . 18 (⟨𝐴, 𝐵⟩2nd 𝑎𝑎 = 𝐵)
151, 10brco 5257 . . . . . . . . . . . . . . . . . . 19 (⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏 ↔ ∃𝑥(⟨𝐴, 𝐵⟩1st 𝑥𝑥Range𝑏))
16 vex 3192 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥 ∈ V
176, 7, 16br1steq 31409 . . . . . . . . . . . . . . . . . . . . . 22 (⟨𝐴, 𝐵⟩1st 𝑥𝑥 = 𝐴)
1817anbi1i 730 . . . . . . . . . . . . . . . . . . . . 21 ((⟨𝐴, 𝐵⟩1st 𝑥𝑥Range𝑏) ↔ (𝑥 = 𝐴𝑥Range𝑏))
1918exbii 1771 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥(⟨𝐴, 𝐵⟩1st 𝑥𝑥Range𝑏) ↔ ∃𝑥(𝑥 = 𝐴𝑥Range𝑏))
20 breq1 4621 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝐴 → (𝑥Range𝑏𝐴Range𝑏))
216, 20ceqsexv 3231 . . . . . . . . . . . . . . . . . . . 20 (∃𝑥(𝑥 = 𝐴𝑥Range𝑏) ↔ 𝐴Range𝑏)
2219, 21bitri 264 . . . . . . . . . . . . . . . . . . 19 (∃𝑥(⟨𝐴, 𝐵⟩1st 𝑥𝑥Range𝑏) ↔ 𝐴Range𝑏)
236, 10brrange 31718 . . . . . . . . . . . . . . . . . . 19 (𝐴Range𝑏𝑏 = ran 𝐴)
2415, 22, 233bitri 286 . . . . . . . . . . . . . . . . . 18 (⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏𝑏 = ran 𝐴)
25 biid 251 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝑎, 𝑏⟩)
2614, 24, 253anbi123i 1249 . . . . . . . . . . . . . . . . 17 ((⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏𝑥 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝐵𝑏 = ran 𝐴𝑥 = ⟨𝑎, 𝑏⟩))
2713, 26bitri 264 . . . . . . . . . . . . . . . 16 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏) ↔ (𝑎 = 𝐵𝑏 = ran 𝐴𝑥 = ⟨𝑎, 𝑏⟩))
28272exbii 1772 . . . . . . . . . . . . . . 15 (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩2nd 𝑎 ∧ ⟨𝐴, 𝐵⟩(Range ∘ 1st )𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝐵𝑏 = ran 𝐴𝑥 = ⟨𝑎, 𝑏⟩))
296rnex 7054 . . . . . . . . . . . . . . . 16 ran 𝐴 ∈ V
30 opeq1 4375 . . . . . . . . . . . . . . . . 17 (𝑎 = 𝐵 → ⟨𝑎, 𝑏⟩ = ⟨𝐵, 𝑏⟩)
3130eqeq2d 2631 . . . . . . . . . . . . . . . 16 (𝑎 = 𝐵 → (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝐵, 𝑏⟩))
32 opeq2 4376 . . . . . . . . . . . . . . . . 17 (𝑏 = ran 𝐴 → ⟨𝐵, 𝑏⟩ = ⟨𝐵, ran 𝐴⟩)
3332eqeq2d 2631 . . . . . . . . . . . . . . . 16 (𝑏 = ran 𝐴 → (𝑥 = ⟨𝐵, 𝑏⟩ ↔ 𝑥 = ⟨𝐵, ran 𝐴⟩))
347, 29, 31, 33ceqsex2v 3234 . . . . . . . . . . . . . . 15 (∃𝑎𝑏(𝑎 = 𝐵𝑏 = ran 𝐴𝑥 = ⟨𝑎, 𝑏⟩) ↔ 𝑥 = ⟨𝐵, ran 𝐴⟩)
3512, 28, 343bitri 286 . . . . . . . . . . . . . 14 (⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥 = ⟨𝐵, ran 𝐴⟩)
3635anbi1i 730 . . . . . . . . . . . . 13 ((⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥Cart𝑏) ↔ (𝑥 = ⟨𝐵, ran 𝐴⟩ ∧ 𝑥Cart𝑏))
3736exbii 1771 . . . . . . . . . . . 12 (∃𝑥(⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥Cart𝑏) ↔ ∃𝑥(𝑥 = ⟨𝐵, ran 𝐴⟩ ∧ 𝑥Cart𝑏))
38 opex 4898 . . . . . . . . . . . . 13 𝐵, ran 𝐴⟩ ∈ V
39 breq1 4621 . . . . . . . . . . . . 13 (𝑥 = ⟨𝐵, ran 𝐴⟩ → (𝑥Cart𝑏 ↔ ⟨𝐵, ran 𝐴⟩Cart𝑏))
4038, 39ceqsexv 3231 . . . . . . . . . . . 12 (∃𝑥(𝑥 = ⟨𝐵, ran 𝐴⟩ ∧ 𝑥Cart𝑏) ↔ ⟨𝐵, ran 𝐴⟩Cart𝑏)
4137, 40bitri 264 . . . . . . . . . . 11 (∃𝑥(⟨𝐴, 𝐵⟩(2nd ⊗ (Range ∘ 1st ))𝑥𝑥Cart𝑏) ↔ ⟨𝐵, ran 𝐴⟩Cart𝑏)
427, 29, 10brcart 31716 . . . . . . . . . . 11 (⟨𝐵, ran 𝐴⟩Cart𝑏𝑏 = (𝐵 × ran 𝐴))
4311, 41, 423bitri 286 . . . . . . . . . 10 (⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏𝑏 = (𝐵 × ran 𝐴))
449, 43, 253anbi123i 1249 . . . . . . . . 9 ((⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏𝑥 = ⟨𝑎, 𝑏⟩) ↔ (𝑎 = 𝐴𝑏 = (𝐵 × ran 𝐴) ∧ 𝑥 = ⟨𝑎, 𝑏⟩))
455, 44bitri 264 . . . . . . . 8 ((𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏) ↔ (𝑎 = 𝐴𝑏 = (𝐵 × ran 𝐴) ∧ 𝑥 = ⟨𝑎, 𝑏⟩))
46452exbii 1772 . . . . . . 7 (∃𝑎𝑏(𝑥 = ⟨𝑎, 𝑏⟩ ∧ ⟨𝐴, 𝐵⟩1st 𝑎 ∧ ⟨𝐴, 𝐵⟩(Cart ∘ (2nd ⊗ (Range ∘ 1st )))𝑏) ↔ ∃𝑎𝑏(𝑎 = 𝐴𝑏 = (𝐵 × ran 𝐴) ∧ 𝑥 = ⟨𝑎, 𝑏⟩))
477, 29xpex 6922 . . . . . . . 8 (𝐵 × ran 𝐴) ∈ V
48 opeq1 4375 . . . . . . . . 9 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
4948eqeq2d 2631 . . . . . . . 8 (𝑎 = 𝐴 → (𝑥 = ⟨𝑎, 𝑏⟩ ↔ 𝑥 = ⟨𝐴, 𝑏⟩))
50 opeq2 4376 . . . . . . . . 9 (𝑏 = (𝐵 × ran 𝐴) → ⟨𝐴, 𝑏⟩ = ⟨𝐴, (𝐵 × ran 𝐴)⟩)
5150eqeq2d 2631 . . . . . . . 8 (𝑏 = (𝐵 × ran 𝐴) → (𝑥 = ⟨𝐴, 𝑏⟩ ↔ 𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩))
526, 47, 49, 51ceqsex2v 3234 . . . . . . 7 (∃𝑎𝑏(𝑎 = 𝐴𝑏 = (𝐵 × ran 𝐴) ∧ 𝑥 = ⟨𝑎, 𝑏⟩) ↔ 𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩)
534, 46, 523bitri 286 . . . . . 6 (⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩)
5453anbi1i 730 . . . . 5 ((⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥𝑥Cap𝐶) ↔ (𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ ∧ 𝑥Cap𝐶))
5554exbii 1771 . . . 4 (∃𝑥(⟨𝐴, 𝐵⟩(1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st ))))𝑥𝑥Cap𝐶) ↔ ∃𝑥(𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ ∧ 𝑥Cap𝐶))
563, 55bitri 264 . . 3 (⟨𝐴, 𝐵⟩(Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))𝐶 ↔ ∃𝑥(𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ ∧ 𝑥Cap𝐶))
57 opex 4898 . . . 4 𝐴, (𝐵 × ran 𝐴)⟩ ∈ V
58 breq1 4621 . . . 4 (𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ → (𝑥Cap𝐶 ↔ ⟨𝐴, (𝐵 × ran 𝐴)⟩Cap𝐶))
5957, 58ceqsexv 3231 . . 3 (∃𝑥(𝑥 = ⟨𝐴, (𝐵 × ran 𝐴)⟩ ∧ 𝑥Cap𝐶) ↔ ⟨𝐴, (𝐵 × ran 𝐴)⟩Cap𝐶)
606, 47, 2brcap 31724 . . 3 (⟨𝐴, (𝐵 × ran 𝐴)⟩Cap𝐶𝐶 = (𝐴 ∩ (𝐵 × ran 𝐴)))
6156, 59, 603bitri 286 . 2 (⟨𝐴, 𝐵⟩(Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))𝐶𝐶 = (𝐴 ∩ (𝐵 × ran 𝐴)))
62 df-restrict 31654 . . 3 Restrict = (Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))
6362breqi 4624 . 2 (⟨𝐴, 𝐵⟩Restrict𝐶 ↔ ⟨𝐴, 𝐵⟩(Cap ∘ (1st ⊗ (Cart ∘ (2nd ⊗ (Range ∘ 1st )))))𝐶)
64 dfres3 31392 . . 3 (𝐴𝐵) = (𝐴 ∩ (𝐵 × ran 𝐴))
6564eqeq2i 2633 . 2 (𝐶 = (𝐴𝐵) ↔ 𝐶 = (𝐴 ∩ (𝐵 × ran 𝐴)))
6661, 63, 653bitr4i 292 1 (⟨𝐴, 𝐵⟩Restrict𝐶𝐶 = (𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  w3a 1036   = wceq 1480  wex 1701  wcel 1987  Vcvv 3189  cin 3558  cop 4159   class class class wbr 4618   × cxp 5077  ran crn 5080  cres 5081  ccom 5083  1st c1st 7118  2nd c2nd 7119  ctxp 31613  Cartccart 31624  Rangecrange 31627  Capccap 31630  Restrictcrestrict 31634
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6909
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-symdif 3827  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-eprel 4990  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5815  df-fun 5854  df-fn 5855  df-f 5856  df-fo 5858  df-fv 5860  df-1st 7120  df-2nd 7121  df-txp 31637  df-pprod 31638  df-image 31647  df-cart 31648  df-range 31651  df-cap 31653  df-restrict 31654
This theorem is referenced by:  dfrecs2  31734
  Copyright terms: Public domain W3C validator