Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle Structured version   Visualization version   GIF version

Theorem brsegle 33466
Description: Binary relation form of the segment comparison relationship. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑦,𝐶   𝑦,𝐷   𝑦,𝑁

Proof of Theorem brsegle
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑛 𝑝 𝑞 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opex 5347 . . 3 𝐴, 𝐵⟩ ∈ V
2 opex 5347 . . 3 𝐶, 𝐷⟩ ∈ V
3 eqeq1 2822 . . . . . . . 8 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 = ⟨𝑎, 𝑏⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩))
4 eqcom 2825 . . . . . . . 8 (⟨𝐴, 𝐵⟩ = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
53, 4syl6bb 288 . . . . . . 7 (𝑝 = ⟨𝐴, 𝐵⟩ → (𝑝 = ⟨𝑎, 𝑏⟩ ↔ ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩))
653anbi1d 1431 . . . . . 6 (𝑝 = ⟨𝐴, 𝐵⟩ → ((𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
76rexbidv 3294 . . . . 5 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
872rexbidv 3297 . . . 4 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
982rexbidv 3297 . . 3 (𝑝 = ⟨𝐴, 𝐵⟩ → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
10 eqeq1 2822 . . . . . . . 8 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 = ⟨𝑐, 𝑑⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝑐, 𝑑⟩))
11 eqcom 2825 . . . . . . . 8 (⟨𝐶, 𝐷⟩ = ⟨𝑐, 𝑑⟩ ↔ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
1210, 11syl6bb 288 . . . . . . 7 (𝑞 = ⟨𝐶, 𝐷⟩ → (𝑞 = ⟨𝑐, 𝑑⟩ ↔ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩))
13123anbi2d 1432 . . . . . 6 (𝑞 = ⟨𝐶, 𝐷⟩ → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
1413rexbidv 3294 . . . . 5 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
15142rexbidv 3297 . . . 4 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
16152rexbidv 3297 . . 3 (𝑞 = ⟨𝐶, 𝐷⟩ → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
17 df-segle 33465 . . 3 Seg = {⟨𝑝, 𝑞⟩ ∣ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(𝑝 = ⟨𝑎, 𝑏⟩ ∧ 𝑞 = ⟨𝑐, 𝑑⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))}
181, 2, 9, 16, 17brab 5421 . 2 (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
19 vex 3495 . . . . . . . . 9 𝑎 ∈ V
20 vex 3495 . . . . . . . . 9 𝑏 ∈ V
2119, 20opth 5359 . . . . . . . 8 (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑎 = 𝐴𝑏 = 𝐵))
22 vex 3495 . . . . . . . . 9 𝑐 ∈ V
23 vex 3495 . . . . . . . . 9 𝑑 ∈ V
2422, 23opth 5359 . . . . . . . 8 (⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑐 = 𝐶𝑑 = 𝐷))
25 biid 262 . . . . . . . 8 (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
2621, 24, 253anbi123i 1147 . . . . . . 7 ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
27262rexbii 3245 . . . . . 6 (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
28272rexbii 3245 . . . . 5 (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
2928rexbii 3244 . . . 4 (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
30 simpl2l 1218 . . . . . . . . . . . . . . . . . . 19 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → 𝐴 ∈ (𝔼‘𝑁))
3130ad2antrl 724 . . . . . . . . . . . . . . . . . 18 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝐴 ∈ (𝔼‘𝑁))
32 eleenn 26609 . . . . . . . . . . . . . . . . . 18 (𝐴 ∈ (𝔼‘𝑁) → 𝑁 ∈ ℕ)
3331, 32syl 17 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑁 ∈ ℕ)
34 simprlr 776 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑛 ∈ ℕ)
35 simprll 775 . . . . . . . . . . . . . . . . . 18 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → 𝐴 ∈ (𝔼‘𝑛))
3635adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝐴 ∈ (𝔼‘𝑛))
37 axdimuniq 26626 . . . . . . . . . . . . . . . . 17 (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑛 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑛))) → 𝑁 = 𝑛)
3833, 31, 34, 36, 37syl22anc 834 . . . . . . . . . . . . . . . 16 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → 𝑁 = 𝑛)
3938fveq2d 6667 . . . . . . . . . . . . . . 15 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → (𝔼‘𝑁) = (𝔼‘𝑛))
4039rexeqdv 3414 . . . . . . . . . . . . . 14 (((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) ∧ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
4140exbiri 807 . . . . . . . . . . . . 13 ((𝑎 = 𝐴 ∧ (𝑏 = 𝐵 ∧ (𝑐 = 𝐶𝑑 = 𝐷))) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
4241anassrs 468 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
43 eleq1 2897 . . . . . . . . . . . . . . 15 (𝑎 = 𝐴 → (𝑎 ∈ (𝔼‘𝑛) ↔ 𝐴 ∈ (𝔼‘𝑛)))
44 eleq1 2897 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → (𝑏 ∈ (𝔼‘𝑛) ↔ 𝐵 ∈ (𝔼‘𝑛)))
4543, 44bi2anan9 635 . . . . . . . . . . . . . 14 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ↔ (𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛))))
46 eleq1 2897 . . . . . . . . . . . . . . 15 (𝑐 = 𝐶 → (𝑐 ∈ (𝔼‘𝑛) ↔ 𝐶 ∈ (𝔼‘𝑛)))
47 eleq1 2897 . . . . . . . . . . . . . . 15 (𝑑 = 𝐷 → (𝑑 ∈ (𝔼‘𝑛) ↔ 𝐷 ∈ (𝔼‘𝑛)))
4846, 47bi2anan9 635 . . . . . . . . . . . . . 14 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)) ↔ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))
4945, 48bi2anan9 635 . . . . . . . . . . . . 13 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛))) ↔ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛)))))
5049anbi2d 628 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝐴 ∈ (𝔼‘𝑛) ∧ 𝐵 ∈ (𝔼‘𝑛)) ∧ (𝐶 ∈ (𝔼‘𝑛) ∧ 𝐷 ∈ (𝔼‘𝑛))))))
51 opeq12 4797 . . . . . . . . . . . . . . . . 17 ((𝑎 = 𝐴𝑏 = 𝐵) → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
5251breq1d 5067 . . . . . . . . . . . . . . . 16 ((𝑎 = 𝐴𝑏 = 𝐵) → (⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))
5352anbi2d 628 . . . . . . . . . . . . . . 15 ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
54 opeq12 4797 . . . . . . . . . . . . . . . . 17 ((𝑐 = 𝐶𝑑 = 𝐷) → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
5554breq2d 5069 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑑 = 𝐷) → (𝑦 Btwn ⟨𝑐, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝐷⟩))
56 opeq1 4795 . . . . . . . . . . . . . . . . . 18 (𝑐 = 𝐶 → ⟨𝑐, 𝑦⟩ = ⟨𝐶, 𝑦⟩)
5756breq2d 5069 . . . . . . . . . . . . . . . . 17 (𝑐 = 𝐶 → (⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
5857adantr 481 . . . . . . . . . . . . . . . 16 ((𝑐 = 𝐶𝑑 = 𝐷) → (⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
5955, 58anbi12d 630 . . . . . . . . . . . . . . 15 ((𝑐 = 𝐶𝑑 = 𝐷) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6053, 59sylan9bb 510 . . . . . . . . . . . . . 14 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6160rexbidv 3294 . . . . . . . . . . . . 13 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6261imbi1d 343 . . . . . . . . . . . 12 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ↔ (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6342, 50, 623imtr4d 295 . . . . . . . . . . 11 (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6463com12 32 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷)) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6564expd 416 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → ((𝑎 = 𝐴𝑏 = 𝐵) → ((𝑐 = 𝐶𝑑 = 𝐷) → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))))
66653impd 1340 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ ((𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛)) ∧ (𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)))) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6766expr 457 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛))) → ((𝑐 ∈ (𝔼‘𝑛) ∧ 𝑑 ∈ (𝔼‘𝑛)) → (((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
6867rexlimdvv 3290 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) ∧ (𝑎 ∈ (𝔼‘𝑛) ∧ 𝑏 ∈ (𝔼‘𝑛))) → (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
6968rexlimdvva 3291 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑛 ∈ ℕ) → (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
7069rexlimdva 3281 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)((𝑎 = 𝐴𝑏 = 𝐵) ∧ (𝑐 = 𝐶𝑑 = 𝐷) ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
7129, 70syl5bi 243 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
72 simpl1 1183 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝑁 ∈ ℕ)
73 simpl2l 1218 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐴 ∈ (𝔼‘𝑁))
74 simpl2r 1219 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐵 ∈ (𝔼‘𝑁))
75 simpl3l 1220 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐶 ∈ (𝔼‘𝑁))
76 simpl3r 1221 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐷 ∈ (𝔼‘𝑁))
77 eqidd 2819 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩)
78 eqidd 2819 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩)
79 simpr 485 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
80 opeq1 4795 . . . . . . . . . 10 (𝑐 = 𝐶 → ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝑑⟩)
8180eqeq1d 2820 . . . . . . . . 9 (𝑐 = 𝐶 → (⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩))
8280breq2d 5069 . . . . . . . . . . 11 (𝑐 = 𝐶 → (𝑦 Btwn ⟨𝑐, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝑑⟩))
8382, 57anbi12d 630 . . . . . . . . . 10 (𝑐 = 𝐶 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
8483rexbidv 3294 . . . . . . . . 9 (𝑐 = 𝐶 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
8581, 843anbi23d 1430 . . . . . . . 8 (𝑐 = 𝐶 → ((⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
86 opeq2 4796 . . . . . . . . . 10 (𝑑 = 𝐷 → ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩)
8786eqeq1d 2820 . . . . . . . . 9 (𝑑 = 𝐷 → (⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ↔ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩))
8886breq2d 5069 . . . . . . . . . . 11 (𝑑 = 𝐷 → (𝑦 Btwn ⟨𝐶, 𝑑⟩ ↔ 𝑦 Btwn ⟨𝐶, 𝐷⟩))
8988anbi1d 629 . . . . . . . . . 10 (𝑑 = 𝐷 → ((𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9089rexbidv 3294 . . . . . . . . 9 (𝑑 = 𝐷 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9187, 903anbi23d 1430 . . . . . . . 8 (𝑑 = 𝐷 → ((⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))))
9285, 91rspc2ev 3632 . . . . . . 7 ((𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))) → ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
9375, 76, 77, 78, 79, 92syl113anc 1374 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
94 opeq1 4795 . . . . . . . . . 10 (𝑎 = 𝐴 → ⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝑏⟩)
9594eqeq1d 2820 . . . . . . . . 9 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩))
9694breq1d 5067 . . . . . . . . . . 11 (𝑎 = 𝐴 → (⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))
9796anbi2d 628 . . . . . . . . . 10 (𝑎 = 𝐴 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
9897rexbidv 3294 . . . . . . . . 9 (𝑎 = 𝐴 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
9995, 983anbi13d 1429 . . . . . . . 8 (𝑎 = 𝐴 → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
100992rexbidv 3297 . . . . . . 7 (𝑎 = 𝐴 → (∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
101 opeq2 4796 . . . . . . . . . 10 (𝑏 = 𝐵 → ⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩)
102101eqeq1d 2820 . . . . . . . . 9 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ↔ ⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩))
103101breq1d 5067 . . . . . . . . . . 11 (𝑏 = 𝐵 → (⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩ ↔ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))
104103anbi2d 628 . . . . . . . . . 10 (𝑏 = 𝐵 → ((𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ (𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
105104rexbidv 3294 . . . . . . . . 9 (𝑏 = 𝐵 → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩)))
106102, 1053anbi13d 1429 . . . . . . . 8 (𝑏 = 𝐵 → ((⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))))
1071062rexbidv 3297 . . . . . . 7 (𝑏 = 𝐵 → (∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))))
108100, 107rspc2ev 3632 . . . . . 6 ((𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝐴, 𝐵⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝑐, 𝑦⟩))) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
10973, 74, 93, 108syl3anc 1363 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
110 fveq2 6663 . . . . . . 7 (𝑛 = 𝑁 → (𝔼‘𝑛) = (𝔼‘𝑁))
111110rexeqdv 3414 . . . . . . . . . . 11 (𝑛 = 𝑁 → (∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
1121113anbi3d 1433 . . . . . . . . . 10 (𝑛 = 𝑁 → ((⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ (⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
113110, 112rexeqbidv 3400 . . . . . . . . 9 (𝑛 = 𝑁 → (∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
114110, 113rexeqbidv 3400 . . . . . . . 8 (𝑛 = 𝑁 → (∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
115110, 114rexeqbidv 3400 . . . . . . 7 (𝑛 = 𝑁 → (∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
116110, 115rexeqbidv 3400 . . . . . 6 (𝑛 = 𝑁 → (∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
117116rspcev 3620 . . . . 5 ((𝑁 ∈ ℕ ∧ ∃𝑎 ∈ (𝔼‘𝑁)∃𝑏 ∈ (𝔼‘𝑁)∃𝑐 ∈ (𝔼‘𝑁)∃𝑑 ∈ (𝔼‘𝑁)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
11872, 109, 117syl2anc 584 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)))
119118ex 413 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩))))
12071, 119impbid 213 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑛 ∈ ℕ ∃𝑎 ∈ (𝔼‘𝑛)∃𝑏 ∈ (𝔼‘𝑛)∃𝑐 ∈ (𝔼‘𝑛)∃𝑑 ∈ (𝔼‘𝑛)(⟨𝑎, 𝑏⟩ = ⟨𝐴, 𝐵⟩ ∧ ⟨𝑐, 𝑑⟩ = ⟨𝐶, 𝐷⟩ ∧ ∃𝑦 ∈ (𝔼‘𝑛)(𝑦 Btwn ⟨𝑐, 𝑑⟩ ∧ ⟨𝑎, 𝑏⟩Cgr⟨𝑐, 𝑦⟩)) ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
12118, 120syl5bb 284 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396  w3a 1079   = wceq 1528  wcel 2105  wrex 3136  cop 4563   class class class wbr 5057  cfv 6348  cn 11626  𝔼cee 26601   Btwn cbtwn 26602  Cgrccgr 26603   Seg csegle 33464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-map 8397  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-nn 11627  df-z 11970  df-uz 12232  df-fz 12881  df-ee 26604  df-segle 33465
This theorem is referenced by:  brsegle2  33467  seglecgr12im  33468  seglerflx  33470  seglemin  33471  segletr  33472  segleantisym  33473  seglelin  33474  btwnsegle  33475
  Copyright terms: Public domain W3C validator