Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brsegle2 Structured version   Visualization version   GIF version

Theorem brsegle2 31192
Description: Alternate characterization of segment comparison. Theorem 5.5 of [Schwabhauser] p. 41-42. (Contributed by Scott Fenton, 11-Oct-2013.)
Assertion
Ref Expression
brsegle2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
Distinct variable groups:   𝑥,𝑁   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem brsegle2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 brsegle 31191 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
2 simprl 789 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
3 simpl1 1056 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
4 simpl3l 1108 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
5 simpl3r 1109 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
6 simpr 475 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
7 btwncolinear2 31153 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
83, 4, 5, 6, 7syl13anc 1319 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
98adantr 479 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ → 𝐶 Colinear ⟨𝑦, 𝐷⟩))
102, 9mpd 15 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → 𝐶 Colinear ⟨𝑦, 𝐷⟩)
11 simpl2l 1106 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
12 simpl2r 1107 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
13 simprr 791 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
143, 11, 12, 4, 6, 13cgrcomand 31074 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩)
15 simpl2 1057 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
16 lineext 31159 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
173, 4, 6, 5, 15, 16syl131anc 1330 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
1817adantr 479 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ((𝐶 Colinear ⟨𝑦, 𝐷⟩ ∧ ⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩))
1910, 14, 18mp2and 710 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩)
20 an32 834 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ↔ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)))
21 simpll1 1092 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
22 simpl3l 1108 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
2322adantr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
24 simpr 475 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑦 ∈ (𝔼‘𝑁))
25 simpl3r 1109 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
2625adantr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
27 simpl2l 1106 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
2827adantr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
29 simpl2r 1107 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
3029adantr 479 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
31 simplr 787 . . . . . . . . . . . 12 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
32 brcgr3 31129 . . . . . . . . . . . 12 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3321, 23, 24, 26, 28, 30, 31, 32syl133anc 1340 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3433adantr 479 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
35 simp2l 1079 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
36 simp3 1055 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩))
37333ad2ant1 1074 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ ↔ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)))
3836, 37mpbird 245 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩)
39 btwnxfr 31139 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
4021, 23, 24, 26, 28, 30, 31, 39syl133anc 1340 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
41403ad2ant1 1074 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩) → 𝐵 Btwn ⟨𝐴, 𝑥⟩))
4235, 38, 41mp2and 710 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
43 simp32 1090 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩)
44 cgrcom 31073 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
4521, 23, 26, 28, 31, 44syl122anc 1326 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
46453ad2ant1 1074 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ↔ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
4743, 46mpbid 220 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
4842, 47jca 552 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ∧ (⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
49483expia 1258 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ((⟨𝐶, 𝑦⟩Cgr⟨𝐴, 𝐵⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐴, 𝑥⟩ ∧ ⟨𝑦, 𝐷⟩Cgr⟨𝐵, 𝑥⟩) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5034, 49sylbid 228 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5120, 50sylanb 487 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5251an32s 841 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5352reximdva 2999 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → (∃𝑥 ∈ (𝔼‘𝑁)⟨𝐶, ⟨𝑦, 𝐷⟩⟩Cgr3⟨𝐴, ⟨𝐵, 𝑥⟩⟩ → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5419, 53mpd 15 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
5554ex 448 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
5655rexlimdva 3012 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
57 simprl 789 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
58 simpll1 1092 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑁 ∈ ℕ)
5927adantr 479 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐴 ∈ (𝔼‘𝑁))
60 simplr 787 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 ∈ (𝔼‘𝑁))
6129adantr 479 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 ∈ (𝔼‘𝑁))
62 btwncolinear1 31152 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ → 𝐴 Colinear ⟨𝑥, 𝐵⟩))
6358, 59, 60, 61, 62syl13anc 1319 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝑥⟩ → 𝐴 Colinear ⟨𝑥, 𝐵⟩))
6457, 63mpd 15 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐴 Colinear ⟨𝑥, 𝐵⟩)
65 simprr 791 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
66 simpl1 1056 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
67 simpr 475 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
68 simpl3 1058 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)))
69 lineext 31159 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7066, 27, 67, 29, 68, 69syl131anc 1330 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7170adantr 479 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ((𝐴 Colinear ⟨𝑥, 𝐵⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩))
7264, 65, 71mp2and 710 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩)
7327, 67, 293jca 1234 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
7473adantr 479 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)))
75 brcgr3 31129 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
7621, 74, 23, 26, 24, 75syl113anc 1329 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
7776adantr 479 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ ↔ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)))
78 simp2l 1079 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → 𝐵 Btwn ⟨𝐴, 𝑥⟩)
79 simp32 1090 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)
80 simp2r 1080 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
81 simp33 1091 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)
82 cgrcomlr 31081 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ ∧ (𝑥 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐷 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁))) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
8321, 31, 30, 26, 24, 82syl122anc 1326 . . . . . . . . . . . . . . . 16 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
84833ad2ant1 1074 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩ ↔ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
8581, 84mpbid 220 . . . . . . . . . . . . . 14 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)
8679, 80, 853jca 1234 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩))
87 brcgr3 31129 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
8821, 28, 30, 31, 23, 24, 26, 87syl133anc 1340 . . . . . . . . . . . . . 14 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
89883ad2ant1 1074 . . . . . . . . . . . . 13 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩ ↔ (⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐵, 𝑥⟩Cgr⟨𝑦, 𝐷⟩)))
9086, 89mpbird 245 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩)
91 btwnxfr 31139 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑦 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
9221, 28, 30, 31, 23, 24, 26, 91syl133anc 1340 . . . . . . . . . . . . 13 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
93923ad2ant1 1074 . . . . . . . . . . . 12 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, ⟨𝐵, 𝑥⟩⟩Cgr3⟨𝐶, ⟨𝑦, 𝐷⟩⟩) → 𝑦 Btwn ⟨𝐶, 𝐷⟩))
9478, 90, 93mp2and 710 . . . . . . . . . . 11 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → 𝑦 Btwn ⟨𝐶, 𝐷⟩)
9594, 79jca 552 . . . . . . . . . 10 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩)) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
96953expia 1258 . . . . . . . . 9 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ((⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩ ∧ ⟨𝑥, 𝐵⟩Cgr⟨𝐷, 𝑦⟩) → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9777, 96sylbid 228 . . . . . . . 8 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ 𝑦 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9897an32s 841 . . . . . . 7 (((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) ∧ 𝑦 ∈ (𝔼‘𝑁)) → (⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → (𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
9998reximdva 2999 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (∃𝑦 ∈ (𝔼‘𝑁)⟨𝐴, ⟨𝑥, 𝐵⟩⟩Cgr3⟨𝐶, ⟨𝐷, 𝑦⟩⟩ → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
10072, 99mpd 15 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩))
101100ex 448 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
102101rexlimdva 3012 . . 3 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → ∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩)))
10356, 102impbid 200 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (∃𝑦 ∈ (𝔼‘𝑁)(𝑦 Btwn ⟨𝐶, 𝐷⟩ ∧ ⟨𝐴, 𝐵⟩Cgr⟨𝐶, 𝑦⟩) ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
1041, 103bitrd 266 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → (⟨𝐴, 𝐵⟩ Seg𝐶, 𝐷⟩ ↔ ∃𝑥 ∈ (𝔼‘𝑁)(𝐵 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐴, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wa 382  w3a 1030  wcel 1976  wrex 2896  cop 4130   class class class wbr 4577  cfv 5790  cn 10867  𝔼cee 25486   Btwn cbtwn 25487  Cgrccgr 25488  Cgr3ccgr3 31119   Colinear ccolin 31120   Seg csegle 31189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6824  ax-inf2 8398  ax-cnex 9848  ax-resscn 9849  ax-1cn 9850  ax-icn 9851  ax-addcl 9852  ax-addrcl 9853  ax-mulcl 9854  ax-mulrcl 9855  ax-mulcom 9856  ax-addass 9857  ax-mulass 9858  ax-distr 9859  ax-i2m1 9860  ax-1ne0 9861  ax-1rid 9862  ax-rnegex 9863  ax-rrecex 9864  ax-cnre 9865  ax-pre-lttri 9866  ax-pre-lttrn 9867  ax-pre-ltadd 9868  ax-pre-mulgt0 9869  ax-pre-sup 9870
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6935  df-1st 7036  df-2nd 7037  df-wrecs 7271  df-recs 7332  df-rdg 7370  df-1o 7424  df-oadd 7428  df-er 7606  df-map 7723  df-en 7819  df-dom 7820  df-sdom 7821  df-fin 7822  df-sup 8208  df-oi 8275  df-card 8625  df-pnf 9932  df-mnf 9933  df-xr 9934  df-ltxr 9935  df-le 9936  df-sub 10119  df-neg 10120  df-div 10534  df-nn 10868  df-2 10926  df-3 10927  df-n0 11140  df-z 11211  df-uz 11520  df-rp 11665  df-ico 12008  df-icc 12009  df-fz 12153  df-fzo 12290  df-seq 12619  df-exp 12678  df-hash 12935  df-cj 13633  df-re 13634  df-im 13635  df-sqrt 13769  df-abs 13770  df-clim 14013  df-sum 14211  df-ee 25489  df-btwn 25490  df-cgr 25491  df-ofs 31066  df-colinear 31122  df-ifs 31123  df-cgr3 31124  df-segle 31190
This theorem is referenced by:  segleantisym  31198  seglelin  31199  outsidele  31215
  Copyright terms: Public domain W3C validator