Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brssc Structured version   Visualization version   GIF version

 Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017.)
Assertion
Ref Expression
brssc (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
Distinct variable groups:   𝑡,𝑠,𝑥,𝐻   𝐽,𝑠,𝑡,𝑥

Dummy variables 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sscrel 16520 . . 3 Rel ⊆cat
2 brrelex12 5189 . . 3 ((Rel ⊆cat𝐻cat 𝐽) → (𝐻 ∈ V ∧ 𝐽 ∈ V))
31, 2mpan 706 . 2 (𝐻cat 𝐽 → (𝐻 ∈ V ∧ 𝐽 ∈ V))
4 vex 3234 . . . . . 6 𝑡 ∈ V
54, 4xpex 7004 . . . . 5 (𝑡 × 𝑡) ∈ V
6 fnex 6522 . . . . 5 ((𝐽 Fn (𝑡 × 𝑡) ∧ (𝑡 × 𝑡) ∈ V) → 𝐽 ∈ V)
75, 6mpan2 707 . . . 4 (𝐽 Fn (𝑡 × 𝑡) → 𝐽 ∈ V)
8 elex 3243 . . . . 5 (𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 ∈ V)
98rexlimivw 3058 . . . 4 (∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥) → 𝐻 ∈ V)
107, 9anim12ci 590 . . 3 ((𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V))
1110exlimiv 1898 . 2 (∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)) → (𝐻 ∈ V ∧ 𝐽 ∈ V))
12 simpr 476 . . . . . 6 (( = 𝐻𝑗 = 𝐽) → 𝑗 = 𝐽)
1312fneq1d 6019 . . . . 5 (( = 𝐻𝑗 = 𝐽) → (𝑗 Fn (𝑡 × 𝑡) ↔ 𝐽 Fn (𝑡 × 𝑡)))
14 simpl 472 . . . . . . 7 (( = 𝐻𝑗 = 𝐽) → = 𝐻)
1512fveq1d 6231 . . . . . . . . 9 (( = 𝐻𝑗 = 𝐽) → (𝑗𝑥) = (𝐽𝑥))
1615pweqd 4196 . . . . . . . 8 (( = 𝐻𝑗 = 𝐽) → 𝒫 (𝑗𝑥) = 𝒫 (𝐽𝑥))
1716ixpeq2dv 7966 . . . . . . 7 (( = 𝐻𝑗 = 𝐽) → X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) = X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))
1814, 17eleq12d 2724 . . . . . 6 (( = 𝐻𝑗 = 𝐽) → (X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) ↔ 𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
1918rexbidv 3081 . . . . 5 (( = 𝐻𝑗 = 𝐽) → (∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥) ↔ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
2013, 19anbi12d 747 . . . 4 (( = 𝐻𝑗 = 𝐽) → ((𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥)) ↔ (𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
2120exbidv 1890 . . 3 (( = 𝐻𝑗 = 𝐽) → (∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥)) ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
22 df-ssc 16517 . . 3 cat = {⟨, 𝑗⟩ ∣ ∃𝑡(𝑗 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝑗𝑥))}
2321, 22brabga 5018 . 2 ((𝐻 ∈ V ∧ 𝐽 ∈ V) → (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥))))
243, 11, 23pm5.21nii 367 1 (𝐻cat 𝐽 ↔ ∃𝑡(𝐽 Fn (𝑡 × 𝑡) ∧ ∃𝑠 ∈ 𝒫 𝑡𝐻X𝑥 ∈ (𝑠 × 𝑠)𝒫 (𝐽𝑥)))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   = wceq 1523  ∃wex 1744   ∈ wcel 2030  ∃wrex 2942  Vcvv 3231  𝒫 cpw 4191   class class class wbr 4685   × cxp 5141  Rel wrel 5148   Fn wfn 5921  ‘cfv 5926  Xcixp 7950   ⊆cat cssc 16514 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-ixp 7951  df-ssc 16517 This theorem is referenced by:  sscpwex  16522  sscfn1  16524  sscfn2  16525  isssc  16527
 Copyright terms: Public domain W3C validator