![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > brsslt | Structured version Visualization version GIF version |
Description: Binary relation form of the surreal set less-than relation. (Contributed by Scott Fenton, 8-Dec-2021.) |
Ref | Expression |
---|---|
brsslt | ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-sslt 32203 | . . 3 ⊢ <<s = {〈𝑎, 𝑏〉 ∣ (𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)} | |
2 | 1 | bropaex12 5349 | . 2 ⊢ (𝐴 <<s 𝐵 → (𝐴 ∈ V ∧ 𝐵 ∈ V)) |
3 | sseq1 3767 | . . . 4 ⊢ (𝑎 = 𝐴 → (𝑎 ⊆ No ↔ 𝐴 ⊆ No )) | |
4 | raleq 3277 | . . . 4 ⊢ (𝑎 = 𝐴 → (∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦)) | |
5 | 3, 4 | 3anbi13d 1550 | . . 3 ⊢ (𝑎 = 𝐴 → ((𝑎 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝑎 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦) ↔ (𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦))) |
6 | sseq1 3767 | . . . 4 ⊢ (𝑏 = 𝐵 → (𝑏 ⊆ No ↔ 𝐵 ⊆ No )) | |
7 | raleq 3277 | . . . . 5 ⊢ (𝑏 = 𝐵 → (∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) | |
8 | 7 | ralbidv 3124 | . . . 4 ⊢ (𝑏 = 𝐵 → (∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦)) |
9 | 6, 8 | 3anbi23d 1551 | . . 3 ⊢ (𝑏 = 𝐵 → ((𝐴 ⊆ No ∧ 𝑏 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑏 𝑥 <s 𝑦) ↔ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
10 | 5, 9, 1 | brabg 5144 | . 2 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝐴 <<s 𝐵 ↔ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
11 | 2, 10 | biadan2 677 | 1 ⊢ (𝐴 <<s 𝐵 ↔ ((𝐴 ∈ V ∧ 𝐵 ∈ V) ∧ (𝐴 ⊆ No ∧ 𝐵 ⊆ No ∧ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝑥 <s 𝑦))) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 Vcvv 3340 ⊆ wss 3715 class class class wbr 4804 No csur 32099 <s cslt 32100 <<s csslt 32202 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-sslt 32203 |
This theorem is referenced by: ssltex1 32207 ssltex2 32208 ssltss1 32209 ssltss2 32210 ssltsep 32211 sssslt1 32212 sssslt2 32213 nulsslt 32214 nulssgt 32215 conway 32216 sslttr 32220 ssltun1 32221 ssltun2 32222 etasslt 32226 slerec 32229 |
Copyright terms: Public domain | W3C validator |