![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > brstruct | Structured version Visualization version GIF version |
Description: The structure relation is a relation. (Contributed by Mario Carneiro, 29-Aug-2015.) |
Ref | Expression |
---|---|
brstruct | ⊢ Rel Struct |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-struct 15906 | . 2 ⊢ Struct = {〈𝑓, 𝑥〉 ∣ (𝑥 ∈ ( ≤ ∩ (ℕ × ℕ)) ∧ Fun (𝑓 ∖ {∅}) ∧ dom 𝑓 ⊆ (...‘𝑥))} | |
2 | 1 | relopabi 5278 | 1 ⊢ Rel Struct |
Colors of variables: wff setvar class |
Syntax hints: ∧ w3a 1054 ∈ wcel 2030 ∖ cdif 3604 ∩ cin 3606 ⊆ wss 3607 ∅c0 3948 {csn 4210 × cxp 5141 dom cdm 5143 Rel wrel 5148 Fun wfun 5920 ‘cfv 5926 ≤ cle 10113 ℕcn 11058 ...cfz 12364 Struct cstr 15900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-opab 4746 df-xp 5149 df-rel 5150 df-struct 15906 |
This theorem is referenced by: isstruct2 15914 structex 15915 |
Copyright terms: Public domain | W3C validator |