Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtp Structured version   Visualization version   GIF version

Theorem brtp 30745
Description: A condition for a binary relation over an unordered triple. (Contributed by Scott Fenton, 8-Jun-2011.)
Hypotheses
Ref Expression
brtp.1 𝑋 ∈ V
brtp.2 𝑌 ∈ V
Assertion
Ref Expression
brtp (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))

Proof of Theorem brtp
StepHypRef Expression
1 df-br 4482 . 2 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩})
2 opex 4757 . . 3 𝑋, 𝑌⟩ ∈ V
32eltp 4080 . 2 (⟨𝑋, 𝑌⟩ ∈ {⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩} ↔ (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩))
4 brtp.1 . . . 4 𝑋 ∈ V
5 brtp.2 . . . 4 𝑌 ∈ V
64, 5opth 4769 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ↔ (𝑋 = 𝐴𝑌 = 𝐵))
74, 5opth 4769 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ↔ (𝑋 = 𝐶𝑌 = 𝐷))
84, 5opth 4769 . . 3 (⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩ ↔ (𝑋 = 𝐸𝑌 = 𝐹))
96, 7, 83orbi123i 1244 . 2 ((⟨𝑋, 𝑌⟩ = ⟨𝐴, 𝐵⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐶, 𝐷⟩ ∨ ⟨𝑋, 𝑌⟩ = ⟨𝐸, 𝐹⟩) ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
101, 3, 93bitri 284 1 (𝑋{⟨𝐴, 𝐵⟩, ⟨𝐶, 𝐷⟩, ⟨𝐸, 𝐹⟩}𝑌 ↔ ((𝑋 = 𝐴𝑌 = 𝐵) ∨ (𝑋 = 𝐶𝑌 = 𝐷) ∨ (𝑋 = 𝐸𝑌 = 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wb 194  wa 382  w3o 1029   = wceq 1474  wcel 1938  Vcvv 3077  {ctp 4032  cop 4034   class class class wbr 4481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pr 4732
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-rab 2809  df-v 3079  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-sn 4029  df-pr 4031  df-tp 4033  df-op 4035  df-br 4482
This theorem is referenced by:  sltval2  30899  sltsgn1  30904  sltsgn2  30905  sltintdifex  30906  sltres  30907  sltsolem1  30913  nodenselem8  30933  nodense  30934  nobndup  30945  nobnddown  30946
  Copyright terms: Public domain W3C validator