Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  brtpos2 Structured version   Visualization version   GIF version

Theorem brtpos2 7303
 Description: Value of the transposition at a pair ⟨𝐴, 𝐵⟩. (Contributed by Mario Carneiro, 10-Sep-2015.)
Assertion
Ref Expression
brtpos2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))

Proof of Theorem brtpos2
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 reltpos 7302 . . . 4 Rel tpos 𝐹
21brrelexi 5118 . . 3 (𝐴tpos 𝐹𝐵𝐴 ∈ V)
32a1i 11 . 2 (𝐵𝑉 → (𝐴tpos 𝐹𝐵𝐴 ∈ V))
4 elex 3198 . . . 4 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → 𝐴 ∈ V)
54adantr 481 . . 3 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V)
65a1i 11 . 2 (𝐵𝑉 → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵) → 𝐴 ∈ V))
7 df-tpos 7297 . . . . . 6 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
87breqi 4619 . . . . 5 (𝐴tpos 𝐹𝐵𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵)
9 brcog 5248 . . . . 5 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴(𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
108, 9syl5bb 272 . . . 4 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ ∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵)))
11 funmpt 5884 . . . . . . . . . . 11 Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
12 funbrfv2b 6197 . . . . . . . . . . 11 (Fun (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) → (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦)))
1311, 12ax-mp 5 . . . . . . . . . 10 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦))
14 snex 4869 . . . . . . . . . . . . . . . 16 {𝑥} ∈ V
1514cnvex 7060 . . . . . . . . . . . . . . 15 {𝑥} ∈ V
1615uniex 6906 . . . . . . . . . . . . . 14 {𝑥} ∈ V
17 eqid 2621 . . . . . . . . . . . . . 14 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})
1816, 17dmmpti 5980 . . . . . . . . . . . . 13 dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = (dom 𝐹 ∪ {∅})
1918eleq2i 2690 . . . . . . . . . . . 12 (𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ↔ 𝐴 ∈ (dom 𝐹 ∪ {∅}))
20 eqcom 2628 . . . . . . . . . . . 12 (((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴))
2119, 20anbi12i 732 . . . . . . . . . . 11 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)))
22 sneq 4158 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → {𝑥} = {𝐴})
2322cnveqd 5258 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴{𝑥} = {𝐴})
2423unieqd 4412 . . . . . . . . . . . . . 14 (𝑥 = 𝐴 {𝑥} = {𝐴})
25 snex 4869 . . . . . . . . . . . . . . . 16 {𝐴} ∈ V
2625cnvex 7060 . . . . . . . . . . . . . . 15 {𝐴} ∈ V
2726uniex 6906 . . . . . . . . . . . . . 14 {𝐴} ∈ V
2824, 17, 27fvmpt 6239 . . . . . . . . . . . . 13 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = {𝐴})
2928eqeq2d 2631 . . . . . . . . . . . 12 (𝐴 ∈ (dom 𝐹 ∪ {∅}) → (𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) ↔ 𝑦 = {𝐴}))
3029pm5.32i 668 . . . . . . . . . . 11 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3121, 30bitri 264 . . . . . . . . . 10 ((𝐴 ∈ dom (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) ∧ ((𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})‘𝐴) = 𝑦) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
3213, 31bitri 264 . . . . . . . . 9 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}))
33 ancom 466 . . . . . . . . 9 ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦 = {𝐴}) ↔ (𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})))
3432, 33bitri 264 . . . . . . . 8 (𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦 ↔ (𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})))
3534anbi1i 730 . . . . . . 7 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵))
36 anass 680 . . . . . . 7 (((𝑦 = {𝐴} ∧ 𝐴 ∈ (dom 𝐹 ∪ {∅})) ∧ 𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
3735, 36bitri 264 . . . . . 6 ((𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
3837exbii 1771 . . . . 5 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ ∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)))
39 breq1 4616 . . . . . . 7 (𝑦 = {𝐴} → (𝑦𝐹𝐵 {𝐴}𝐹𝐵))
4039anbi2d 739 . . . . . 6 (𝑦 = {𝐴} → ((𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
4127, 40ceqsexv 3228 . . . . 5 (∃𝑦(𝑦 = {𝐴} ∧ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ 𝑦𝐹𝐵)) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
4238, 41bitri 264 . . . 4 (∃𝑦(𝐴(𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})𝑦𝑦𝐹𝐵) ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))
4310, 42syl6bb 276 . . 3 ((𝐴 ∈ V ∧ 𝐵𝑉) → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
4443expcom 451 . 2 (𝐵𝑉 → (𝐴 ∈ V → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵))))
453, 6, 44pm5.21ndd 369 1 (𝐵𝑉 → (𝐴tpos 𝐹𝐵 ↔ (𝐴 ∈ (dom 𝐹 ∪ {∅}) ∧ {𝐴}𝐹𝐵)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 384   = wceq 1480  ∃wex 1701   ∈ wcel 1987  Vcvv 3186   ∪ cun 3553  ∅c0 3891  {csn 4148  ∪ cuni 4402   class class class wbr 4613   ↦ cmpt 4673  ◡ccnv 5073  dom cdm 5074   ∘ ccom 5078  Fun wfun 5841  ‘cfv 5847  tpos ctpos 7296 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3188  df-sbc 3418  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-fv 5855  df-tpos 7297 This theorem is referenced by:  brtpos0  7304  reldmtpos  7305  brtpos  7306  dftpos4  7316  tpostpos  7317
 Copyright terms: Public domain W3C validator