Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brtxpsd Structured version   Visualization version   GIF version

Theorem brtxpsd 33350
Description: Expansion of a common form used in quantifier-free definitions. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
brtxpsd.1 𝐴 ∈ V
brtxpsd.2 𝐵 ∈ V
Assertion
Ref Expression
brtxpsd 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅

Proof of Theorem brtxpsd
StepHypRef Expression
1 df-br 5059 . . 3 (𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)))
2 opex 5348 . . . . 5 𝐴, 𝐵⟩ ∈ V
32elrn 5816 . . . 4 (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩)
4 brsymdif 5117 . . . . . 6 (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩))
5 brv 5356 . . . . . . . . 9 𝑥V𝐴
6 vex 3497 . . . . . . . . . 10 𝑥 ∈ V
7 brtxpsd.1 . . . . . . . . . 10 𝐴 ∈ V
8 brtxpsd.2 . . . . . . . . . 10 𝐵 ∈ V
96, 7, 8brtxp 33336 . . . . . . . . 9 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ (𝑥V𝐴𝑥 E 𝐵))
105, 9mpbiran 707 . . . . . . . 8 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥 E 𝐵)
118epeli 5462 . . . . . . . 8 (𝑥 E 𝐵𝑥𝐵)
1210, 11bitri 277 . . . . . . 7 (𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥𝐵)
13 brv 5356 . . . . . . . 8 𝑥V𝐵
146, 7, 8brtxp 33336 . . . . . . . 8 (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ (𝑥𝑅𝐴𝑥V𝐵))
1513, 14mpbiran2 708 . . . . . . 7 (𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩ ↔ 𝑥𝑅𝐴)
1612, 15bibi12i 342 . . . . . 6 ((𝑥(V ⊗ E )⟨𝐴, 𝐵⟩ ↔ 𝑥(𝑅 ⊗ V)⟨𝐴, 𝐵⟩) ↔ (𝑥𝐵𝑥𝑅𝐴))
174, 16xchbinx 336 . . . . 5 (𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ¬ (𝑥𝐵𝑥𝑅𝐴))
1817exbii 1844 . . . 4 (∃𝑥 𝑥((V ⊗ E ) △ (𝑅 ⊗ V))⟨𝐴, 𝐵⟩ ↔ ∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴))
193, 18bitri 277 . . 3 (⟨𝐴, 𝐵⟩ ∈ ran ((V ⊗ E ) △ (𝑅 ⊗ V)) ↔ ∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴))
20 exnal 1823 . . 3 (∃𝑥 ¬ (𝑥𝐵𝑥𝑅𝐴) ↔ ¬ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
211, 19, 203bitrri 300 . 2 (¬ ∀𝑥(𝑥𝐵𝑥𝑅𝐴) ↔ 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵)
2221con1bii 359 1 𝐴ran ((V ⊗ E ) △ (𝑅 ⊗ V))𝐵 ↔ ∀𝑥(𝑥𝐵𝑥𝑅𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wb 208  wal 1531  wex 1776  wcel 2110  Vcvv 3494  csymdif 4217  cop 4566   class class class wbr 5058   E cep 5458  ran crn 5550  ctxp 33286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3772  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-symdif 4218  df-nul 4291  df-if 4467  df-sn 4561  df-pr 4563  df-op 4567  df-uni 4832  df-br 5059  df-opab 5121  df-mpt 5139  df-id 5454  df-eprel 5459  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-fo 6355  df-fv 6357  df-1st 7683  df-2nd 7684  df-txp 33310
This theorem is referenced by:  brtxpsd2  33351
  Copyright terms: Public domain W3C validator