MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  brwitnlem Structured version   Visualization version   GIF version

Theorem brwitnlem 8134
Description: Lemma for relations which assert the existence of a witness in a two-parameter set. (Contributed by Stefan O'Rear, 25-Jan-2015.) (Revised by Mario Carneiro, 23-Aug-2015.)
Hypotheses
Ref Expression
brwitnlem.r 𝑅 = (𝑂 “ (V ∖ 1o))
brwitnlem.o 𝑂 Fn 𝑋
Assertion
Ref Expression
brwitnlem (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅)

Proof of Theorem brwitnlem
StepHypRef Expression
1 fvex 6685 . . . . 5 (𝑂‘⟨𝐴, 𝐵⟩) ∈ V
2 dif1o 8127 . . . . 5 ((𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o) ↔ ((𝑂‘⟨𝐴, 𝐵⟩) ∈ V ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
31, 2mpbiran 707 . . . 4 ((𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o) ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
43anbi2i 624 . . 3 ((⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
5 brwitnlem.o . . . 4 𝑂 Fn 𝑋
6 elpreima 6830 . . . 4 (𝑂 Fn 𝑋 → (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o))))
75, 6ax-mp 5 . . 3 (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)) ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ∈ (V ∖ 1o)))
8 ndmfv 6702 . . . . . 6 (¬ ⟨𝐴, 𝐵⟩ ∈ dom 𝑂 → (𝑂‘⟨𝐴, 𝐵⟩) = ∅)
98necon1ai 3045 . . . . 5 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ dom 𝑂)
10 fndm 6457 . . . . . 6 (𝑂 Fn 𝑋 → dom 𝑂 = 𝑋)
115, 10ax-mp 5 . . . . 5 dom 𝑂 = 𝑋
129, 11eleqtrdi 2925 . . . 4 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ → ⟨𝐴, 𝐵⟩ ∈ 𝑋)
1312pm4.71ri 563 . . 3 ((𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅ ↔ (⟨𝐴, 𝐵⟩ ∈ 𝑋 ∧ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅))
144, 7, 133bitr4i 305 . 2 (⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)) ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
15 brwitnlem.r . . . 4 𝑅 = (𝑂 “ (V ∖ 1o))
1615breqi 5074 . . 3 (𝐴𝑅𝐵𝐴(𝑂 “ (V ∖ 1o))𝐵)
17 df-br 5069 . . 3 (𝐴(𝑂 “ (V ∖ 1o))𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)))
1816, 17bitri 277 . 2 (𝐴𝑅𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝑂 “ (V ∖ 1o)))
19 df-ov 7161 . . 3 (𝐴𝑂𝐵) = (𝑂‘⟨𝐴, 𝐵⟩)
2019neeq1i 3082 . 2 ((𝐴𝑂𝐵) ≠ ∅ ↔ (𝑂‘⟨𝐴, 𝐵⟩) ≠ ∅)
2114, 18, 203bitr4i 305 1 (𝐴𝑅𝐵 ↔ (𝐴𝑂𝐵) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  c0 4293  cop 4575   class class class wbr 5068  ccnv 5556  dom cdm 5557  cima 5560   Fn wfn 6352  cfv 6357  (class class class)co 7158  1oc1o 8097
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-fv 6365  df-ov 7161  df-1o 8104
This theorem is referenced by:  brgic  18411  brric  19501  brlmic  19842  hmph  22386
  Copyright terms: Public domain W3C validator