Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnoutside Structured version   Visualization version   GIF version

Theorem btwnoutside 31236
Description: A principle linking outsideness to betweenness. Theorem 6.2 of [Schwabhauser] p. 43. (Contributed by Scott Fenton, 18-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
btwnoutside ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩)))

Proof of Theorem btwnoutside
StepHypRef Expression
1 df-3an 1032 . . . . . 6 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩))
2 simpr11 1137 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝐴𝑃)
3 simpr12 1138 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝐵𝑃)
4 simpr13 1139 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝐶𝑃)
5 simp1 1053 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
6 simp3r 1082 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁))
7 simp2l 1079 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
8 simp3l 1081 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
9 simpr2 1060 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐴, 𝐶⟩)
105, 6, 7, 8, 9btwncomand 31126 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐶, 𝐴⟩)
11 simp2r 1080 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁))
12 simpr3 1061 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
135, 6, 11, 8, 12btwncomand 31126 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → 𝑃 Btwn ⟨𝐶, 𝐵⟩)
14 btwnconn2 31213 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁)) ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → ((𝐶𝑃𝑃 Btwn ⟨𝐶, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐶, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
15143com23 1262 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐶𝑃𝑃 Btwn ⟨𝐶, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐶, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
1615adantr 479 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → ((𝐶𝑃𝑃 Btwn ⟨𝐶, 𝐴⟩ ∧ 𝑃 Btwn ⟨𝐶, 𝐵⟩) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
174, 10, 13, 16mp3and 1418 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
182, 3, 173jca 1234 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
191, 18sylan2br 491 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝑃 Btwn ⟨𝐵, 𝐶⟩)) → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)))
2019expr 640 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ → (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
21 simp3 1055 . . . . 5 ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
22 df-3an 1032 . . . . . . . 8 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩))
23 simpr11 1137 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴𝑃)
24 simpr3 1061 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴 Btwn ⟨𝑃, 𝐵⟩)
255, 7, 6, 11, 24btwncomand 31126 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝐴 Btwn ⟨𝐵, 𝑃⟩)
26 simpr2 1060 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝑃 Btwn ⟨𝐴, 𝐶⟩)
27 btwnouttr2 31133 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐴 Btwn ⟨𝐵, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
285, 11, 7, 6, 8, 27syl122anc 1326 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → ((𝐴𝑃𝐴 Btwn ⟨𝐵, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
2928adantr 479 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → ((𝐴𝑃𝐴 Btwn ⟨𝐵, 𝑃⟩ ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
3023, 25, 26, 29mp3and 1418 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3122, 30sylan2br 491 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐴 Btwn ⟨𝑃, 𝐵⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3231expr 640 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝐴 Btwn ⟨𝑃, 𝐵⟩ → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
33 df-3an 1032 . . . . . . . 8 (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩) ↔ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩))
34 simpr3 1061 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝐵 Btwn ⟨𝑃, 𝐴⟩)
355, 11, 6, 7, 34btwncomand 31126 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝐵 Btwn ⟨𝐴, 𝑃⟩)
36 simpr2 1060 . . . . . . . . 9 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐴, 𝐶⟩)
375, 7, 11, 6, 8, 35, 36btwnexch3and 31132 . . . . . . . 8 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3833, 37sylan2br 491 . . . . . . 7 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) ∧ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩)
3938expr 640 . . . . . 6 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝐵 Btwn ⟨𝑃, 𝐴⟩ → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
4032, 39jaod 393 . . . . 5 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → ((𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
4121, 40syl5 33 . . . 4 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → ((𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩)) → 𝑃 Btwn ⟨𝐵, 𝐶⟩))
4220, 41impbid 200 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
43 broutsideof2 31233 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
445, 6, 7, 11, 43syl13anc 1319 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
4544adantr 479 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃OutsideOf⟨𝐴, 𝐵⟩ ↔ (𝐴𝑃𝐵𝑃 ∧ (𝐴 Btwn ⟨𝑃, 𝐵⟩ ∨ 𝐵 Btwn ⟨𝑃, 𝐴⟩))))
4642, 45bitr4d 269 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) ∧ ((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩)) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩))
4746ex 448 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁))) → (((𝐴𝑃𝐵𝑃𝐶𝑃) ∧ 𝑃 Btwn ⟨𝐴, 𝐶⟩) → (𝑃 Btwn ⟨𝐵, 𝐶⟩ ↔ 𝑃OutsideOf⟨𝐴, 𝐵⟩)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 194  wo 381  wa 382  w3a 1030  wcel 1976  wne 2779  cop 4130   class class class wbr 4577  cfv 5790  cn 10870  𝔼cee 25514   Btwn cbtwn 25515  OutsideOfcoutsideof 31230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-rep 4693  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825  ax-inf2 8399  ax-cnex 9849  ax-resscn 9850  ax-1cn 9851  ax-icn 9852  ax-addcl 9853  ax-addrcl 9854  ax-mulcl 9855  ax-mulrcl 9856  ax-mulcom 9857  ax-addass 9858  ax-mulass 9859  ax-distr 9860  ax-i2m1 9861  ax-1ne0 9862  ax-1rid 9863  ax-rnegex 9864  ax-rrecex 9865  ax-cnre 9866  ax-pre-lttri 9867  ax-pre-lttrn 9868  ax-pre-ltadd 9869  ax-pre-mulgt0 9870  ax-pre-sup 9871
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-nel 2782  df-ral 2900  df-rex 2901  df-reu 2902  df-rmo 2903  df-rab 2904  df-v 3174  df-sbc 3402  df-csb 3499  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-int 4405  df-iun 4451  df-br 4578  df-opab 4638  df-mpt 4639  df-tr 4675  df-eprel 4939  df-id 4943  df-po 4949  df-so 4950  df-fr 4987  df-se 4988  df-we 4989  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-res 5040  df-ima 5041  df-pred 5583  df-ord 5629  df-on 5630  df-lim 5631  df-suc 5632  df-iota 5754  df-fun 5792  df-fn 5793  df-f 5794  df-f1 5795  df-fo 5796  df-f1o 5797  df-fv 5798  df-isom 5799  df-riota 6489  df-ov 6530  df-oprab 6531  df-mpt2 6532  df-om 6936  df-1st 7037  df-2nd 7038  df-wrecs 7272  df-recs 7333  df-rdg 7371  df-1o 7425  df-oadd 7429  df-er 7607  df-map 7724  df-en 7820  df-dom 7821  df-sdom 7822  df-fin 7823  df-sup 8209  df-oi 8276  df-card 8626  df-pnf 9933  df-mnf 9934  df-xr 9935  df-ltxr 9936  df-le 9937  df-sub 10120  df-neg 10121  df-div 10537  df-nn 10871  df-2 10929  df-3 10930  df-n0 11143  df-z 11214  df-uz 11523  df-rp 11668  df-ico 12011  df-icc 12012  df-fz 12156  df-fzo 12293  df-seq 12622  df-exp 12681  df-hash 12938  df-cj 13636  df-re 13637  df-im 13638  df-sqrt 13772  df-abs 13773  df-clim 14016  df-sum 14214  df-ee 25517  df-btwn 25518  df-cgr 25519  df-ofs 31094  df-colinear 31150  df-ifs 31151  df-cgr3 31152  df-fs 31153  df-outsideof 31231
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator