Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwnouttr2 Structured version   Visualization version   GIF version

Theorem btwnouttr2 31101
Description: Outer transitivity law for betweenness. Left-hand side of Theorem 3.1 of [Schwabhauser] p. 30. (Contributed by Scott Fenton, 12-Jun-2013.)
Assertion
Ref Expression
btwnouttr2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))

Proof of Theorem btwnouttr2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simp1 1053 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ)
2 simp2l 1079 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁))
3 simp3l 1081 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁))
4 simp3r 1082 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → 𝐷 ∈ (𝔼‘𝑁))
5 axsegcon 25521 . . . . 5 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
61, 2, 3, 3, 4, 5syl122anc 1326 . . . 4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
76adantr 479 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → ∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
8 simprrl 799 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐴, 𝑥⟩)
9 simprl1 1098 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐵𝐶)
10 simpl2 1057 . . . . . . . . . . . . 13 (((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐵 Btwn ⟨𝐴, 𝐶⟩)
11 simprl 789 . . . . . . . . . . . . 13 (((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → 𝐶 Btwn ⟨𝐴, 𝑥⟩)
1210, 11jca 552 . . . . . . . . . . . 12 (((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩))
1312adantl 480 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → (𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩))
14 simpl1 1056 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑁 ∈ ℕ)
15 simpl2l 1106 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐴 ∈ (𝔼‘𝑁))
16 simpl2r 1107 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐵 ∈ (𝔼‘𝑁))
17 simpl3l 1108 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐶 ∈ (𝔼‘𝑁))
18 simpr 475 . . . . . . . . . . . . 13 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝑥 ∈ (𝔼‘𝑁))
19 btwnexch3 31099 . . . . . . . . . . . . 13 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩) → 𝐶 Btwn ⟨𝐵, 𝑥⟩))
2014, 15, 16, 17, 18, 19syl122anc 1326 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩) → 𝐶 Btwn ⟨𝐵, 𝑥⟩))
2120adantr 479 . . . . . . . . . . 11 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ((𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐴, 𝑥⟩) → 𝐶 Btwn ⟨𝐵, 𝑥⟩))
2213, 21mpd 15 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐵, 𝑥⟩)
23 simprrr 800 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩)
2422, 23jca 552 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))
25 simprl3 1100 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐵, 𝐷⟩)
26 simpl3r 1109 . . . . . . . . . . . 12 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → 𝐷 ∈ (𝔼‘𝑁))
2714, 17, 26cgrrflxd 31067 . . . . . . . . . . 11 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)
2827adantr 479 . . . . . . . . . 10 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)
2925, 28jca 552 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩))
30 segconeq 31089 . . . . . . . . . . 11 ((𝑁 ∈ ℕ ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝑥 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵𝐶 ∧ (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 = 𝐷))
3114, 17, 17, 26, 16, 18, 26, 30syl133anc 1340 . . . . . . . . . 10 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐵𝐶 ∧ (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 = 𝐷))
3231adantr 479 . . . . . . . . 9 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ((𝐵𝐶 ∧ (𝐶 Btwn ⟨𝐵, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐵, 𝐷⟩ ∧ ⟨𝐶, 𝐷⟩Cgr⟨𝐶, 𝐷⟩)) → 𝑥 = 𝐷))
339, 24, 29, 32mp3and 1418 . . . . . . . 8 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝑥 = 𝐷)
3433opeq2d 4337 . . . . . . 7 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → ⟨𝐴, 𝑥⟩ = ⟨𝐴, 𝐷⟩)
358, 34breqtrd 4599 . . . . . 6 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) ∧ (𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩))) → 𝐶 Btwn ⟨𝐴, 𝐷⟩)
3635expr 640 . . . . 5 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ 𝑥 ∈ (𝔼‘𝑁)) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → ((𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))
3736an32s 841 . . . 4 ((((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) ∧ 𝑥 ∈ (𝔼‘𝑁)) → ((𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))
3837rexlimdva 3008 . . 3 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → (∃𝑥 ∈ (𝔼‘𝑁)(𝐶 Btwn ⟨𝐴, 𝑥⟩ ∧ ⟨𝐶, 𝑥⟩Cgr⟨𝐶, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))
397, 38mpd 15 . 2 (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) ∧ (𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩)) → 𝐶 Btwn ⟨𝐴, 𝐷⟩)
4039ex 448 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝐷 ∈ (𝔼‘𝑁))) → ((𝐵𝐶𝐵 Btwn ⟨𝐴, 𝐶⟩ ∧ 𝐶 Btwn ⟨𝐵, 𝐷⟩) → 𝐶 Btwn ⟨𝐴, 𝐷⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382  w3a 1030   = wceq 1474  wcel 1975  wne 2775  wrex 2892  cop 4126   class class class wbr 4573  cfv 5786  cn 10863  𝔼cee 25482   Btwn cbtwn 25483  Cgrccgr 25484
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1711  ax-4 1726  ax-5 1825  ax-6 1873  ax-7 1920  ax-8 1977  ax-9 1984  ax-10 2004  ax-11 2019  ax-12 2031  ax-13 2228  ax-ext 2585  ax-rep 4689  ax-sep 4699  ax-nul 4708  ax-pow 4760  ax-pr 4824  ax-un 6820  ax-inf2 8394  ax-cnex 9844  ax-resscn 9845  ax-1cn 9846  ax-icn 9847  ax-addcl 9848  ax-addrcl 9849  ax-mulcl 9850  ax-mulrcl 9851  ax-mulcom 9852  ax-addass 9853  ax-mulass 9854  ax-distr 9855  ax-i2m1 9856  ax-1ne0 9857  ax-1rid 9858  ax-rnegex 9859  ax-rrecex 9860  ax-cnre 9861  ax-pre-lttri 9862  ax-pre-lttrn 9863  ax-pre-ltadd 9864  ax-pre-mulgt0 9865  ax-pre-sup 9866
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-fal 1480  df-ex 1695  df-nf 1700  df-sb 1866  df-eu 2457  df-mo 2458  df-clab 2592  df-cleq 2598  df-clel 2601  df-nfc 2735  df-ne 2777  df-nel 2778  df-ral 2896  df-rex 2897  df-reu 2898  df-rmo 2899  df-rab 2900  df-v 3170  df-sbc 3398  df-csb 3495  df-dif 3538  df-un 3540  df-in 3542  df-ss 3549  df-pss 3551  df-nul 3870  df-if 4032  df-pw 4105  df-sn 4121  df-pr 4123  df-tp 4125  df-op 4127  df-uni 4363  df-int 4401  df-iun 4447  df-br 4574  df-opab 4634  df-mpt 4635  df-tr 4671  df-eprel 4935  df-id 4939  df-po 4945  df-so 4946  df-fr 4983  df-se 4984  df-we 4985  df-xp 5030  df-rel 5031  df-cnv 5032  df-co 5033  df-dm 5034  df-rn 5035  df-res 5036  df-ima 5037  df-pred 5579  df-ord 5625  df-on 5626  df-lim 5627  df-suc 5628  df-iota 5750  df-fun 5788  df-fn 5789  df-f 5790  df-f1 5791  df-fo 5792  df-f1o 5793  df-fv 5794  df-isom 5795  df-riota 6485  df-ov 6526  df-oprab 6527  df-mpt2 6528  df-om 6931  df-1st 7032  df-2nd 7033  df-wrecs 7267  df-recs 7328  df-rdg 7366  df-1o 7420  df-oadd 7424  df-er 7602  df-map 7719  df-en 7815  df-dom 7816  df-sdom 7817  df-fin 7818  df-sup 8204  df-oi 8271  df-card 8621  df-pnf 9928  df-mnf 9929  df-xr 9930  df-ltxr 9931  df-le 9932  df-sub 10115  df-neg 10116  df-div 10530  df-nn 10864  df-2 10922  df-3 10923  df-n0 11136  df-z 11207  df-uz 11516  df-rp 11661  df-ico 12004  df-icc 12005  df-fz 12149  df-fzo 12286  df-seq 12615  df-exp 12674  df-hash 12931  df-cj 13629  df-re 13630  df-im 13631  df-sqrt 13765  df-abs 13766  df-clim 14009  df-sum 14207  df-ee 25485  df-btwn 25486  df-cgr 25487  df-ofs 31062
This theorem is referenced by:  btwnexch2  31102  btwnouttr  31103  btwnoutside  31204  lineelsb2  31227
  Copyright terms: Public domain W3C validator