Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0mhm Structured version   Visualization version   GIF version

Theorem c0mhm 44188
Description: The constant mapping to zero is a monoid homomorphism. (Contributed by AV, 16-Apr-2020.)
Hypotheses
Ref Expression
c0mhm.b 𝐵 = (Base‘𝑆)
c0mhm.0 0 = (0g𝑇)
c0mhm.h 𝐻 = (𝑥𝐵0 )
Assertion
Ref Expression
c0mhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0mhm
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2823 . . . . . . . 8 (Base‘𝑇) = (Base‘𝑇)
2 c0mhm.0 . . . . . . . 8 0 = (0g𝑇)
31, 2mndidcl 17928 . . . . . . 7 (𝑇 ∈ Mnd → 0 ∈ (Base‘𝑇))
43adantl 484 . . . . . 6 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 0 ∈ (Base‘𝑇))
54adantr 483 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥𝐵) → 0 ∈ (Base‘𝑇))
6 c0mhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
75, 6fmptd 6880 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻:𝐵⟶(Base‘𝑇))
83ancli 551 . . . . . . . . 9 (𝑇 ∈ Mnd → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
98adantl 484 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)))
10 eqid 2823 . . . . . . . . 9 (+g𝑇) = (+g𝑇)
111, 10, 2mndlid 17933 . . . . . . . 8 ((𝑇 ∈ Mnd ∧ 0 ∈ (Base‘𝑇)) → ( 0 (+g𝑇) 0 ) = 0 )
129, 11syl 17 . . . . . . 7 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ( 0 (+g𝑇) 0 ) = 0 )
1312adantr 483 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ( 0 (+g𝑇) 0 ) = 0 )
146a1i 11 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝐻 = (𝑥𝐵0 ))
15 eqidd 2824 . . . . . . . 8 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑎) → 0 = 0 )
16 simprl 769 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑎𝐵)
174adantr 483 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 0 ∈ (Base‘𝑇))
1814, 15, 16, 17fvmptd 6777 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑎) = 0 )
19 eqidd 2824 . . . . . . . 8 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = 𝑏) → 0 = 0 )
20 simprr 771 . . . . . . . 8 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → 𝑏𝐵)
2114, 19, 20, 17fvmptd 6777 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻𝑏) = 0 )
2218, 21oveq12d 7176 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) = ( 0 (+g𝑇) 0 ))
23 eqidd 2824 . . . . . . 7 ((((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) ∧ 𝑥 = (𝑎(+g𝑆)𝑏)) → 0 = 0 )
24 c0mhm.b . . . . . . . . . 10 𝐵 = (Base‘𝑆)
25 eqid 2823 . . . . . . . . . 10 (+g𝑆) = (+g𝑆)
2624, 25mndcl 17921 . . . . . . . . 9 ((𝑆 ∈ Mnd ∧ 𝑎𝐵𝑏𝐵) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
27263expb 1116 . . . . . . . 8 ((𝑆 ∈ Mnd ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
2827adantlr 713 . . . . . . 7 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝑎(+g𝑆)𝑏) ∈ 𝐵)
2914, 23, 28, 17fvmptd 6777 . . . . . 6 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = 0 )
3013, 22, 293eqtr4rd 2869 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝑎𝐵𝑏𝐵)) → (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
3130ralrimivva 3193 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)))
326a1i 11 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 = (𝑥𝐵0 ))
33 eqidd 2824 . . . . 5 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ 𝑥 = (0g𝑆)) → 0 = 0 )
34 eqid 2823 . . . . . . 7 (0g𝑆) = (0g𝑆)
3524, 34mndidcl 17928 . . . . . 6 (𝑆 ∈ Mnd → (0g𝑆) ∈ 𝐵)
3635adantr 483 . . . . 5 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (0g𝑆) ∈ 𝐵)
3732, 33, 36, 4fvmptd 6777 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻‘(0g𝑆)) = 0 )
387, 31, 373jca 1124 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) ∧ (𝐻‘(0g𝑆)) = 0 ))
3938ancli 551 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) ∧ (𝐻‘(0g𝑆)) = 0 )))
4024, 1, 25, 10, 34, 2ismhm 17960 . 2 (𝐻 ∈ (𝑆 MndHom 𝑇) ↔ ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐻:𝐵⟶(Base‘𝑇) ∧ ∀𝑎𝐵𝑏𝐵 (𝐻‘(𝑎(+g𝑆)𝑏)) = ((𝐻𝑎)(+g𝑇)(𝐻𝑏)) ∧ (𝐻‘(0g𝑆)) = 0 )))
4139, 40sylibr 236 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → 𝐻 ∈ (𝑆 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cmpt 5148  wf 6353  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Mndcmnd 17913   MndHom cmhm 17956
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-map 8410  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958
This theorem is referenced by:  c0ghm  44189  c0rhm  44190
  Copyright terms: Public domain W3C validator