Mathbox for Alexander van der Vekens < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  c0snmhm Structured version   Visualization version   GIF version

Theorem c0snmhm 41176
 Description: The constant mapping to zero is a monoid homomorphism from the trivial monoid (consisting of the zero only) to any monoid. (Contributed by AV, 17-Apr-2020.)
Hypotheses
Ref Expression
zrrhm.b 𝐵 = (Base‘𝑇)
zrrhm.0 0 = (0g𝑆)
zrrhm.h 𝐻 = (𝑥𝐵0 )
c0snmhm.z 𝑍 = (0g𝑇)
Assertion
Ref Expression
c0snmhm ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑆   𝑥,𝑇   𝑥, 0   𝑥,𝑍
Allowed substitution hint:   𝐻(𝑥)

Proof of Theorem c0snmhm
StepHypRef Expression
1 pm3.22 465 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
213adant3 1079 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd))
3 simp1 1059 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑆 ∈ Mnd)
4 mndmgm 17216 . . . . 5 (𝑇 ∈ Mnd → 𝑇 ∈ Mgm)
543ad2ant2 1081 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑇 ∈ Mgm)
6 fveq2 6150 . . . . . 6 (𝐵 = {𝑍} → (#‘𝐵) = (#‘{𝑍}))
7 c0snmhm.z . . . . . . . 8 𝑍 = (0g𝑇)
8 fvex 6160 . . . . . . . 8 (0g𝑇) ∈ V
97, 8eqeltri 2700 . . . . . . 7 𝑍 ∈ V
10 hashsng 13096 . . . . . . 7 (𝑍 ∈ V → (#‘{𝑍}) = 1)
119, 10ax-mp 5 . . . . . 6 (#‘{𝑍}) = 1
126, 11syl6eq 2676 . . . . 5 (𝐵 = {𝑍} → (#‘𝐵) = 1)
13123ad2ant3 1082 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (#‘𝐵) = 1)
14 zrrhm.b . . . . 5 𝐵 = (Base‘𝑇)
15 zrrhm.0 . . . . 5 0 = (0g𝑆)
16 zrrhm.h . . . . 5 𝐻 = (𝑥𝐵0 )
1714, 15, 16c0snmgmhm 41175 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mgm ∧ (#‘𝐵) = 1) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
183, 5, 13, 17syl3anc 1323 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MgmHom 𝑆))
1916a1i 11 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 = (𝑥𝐵0 ))
20 eqidd 2627 . . . 4 (((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) ∧ 𝑥 = 𝑍) → 0 = 0 )
219snid 4184 . . . . . 6 𝑍 ∈ {𝑍}
22 eleq2 2693 . . . . . 6 (𝐵 = {𝑍} → (𝑍𝐵𝑍 ∈ {𝑍}))
2321, 22mpbiri 248 . . . . 5 (𝐵 = {𝑍} → 𝑍𝐵)
24233ad2ant3 1082 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝑍𝐵)
25 eqid 2626 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
2625, 15mndidcl 17224 . . . . 5 (𝑆 ∈ Mnd → 0 ∈ (Base‘𝑆))
27263ad2ant1 1080 . . . 4 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 0 ∈ (Base‘𝑆))
2819, 20, 24, 27fvmptd 6246 . . 3 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻𝑍) = 0 )
2918, 28jca 554 . 2 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 ))
30 eqid 2626 . . 3 (+g𝑇) = (+g𝑇)
31 eqid 2626 . . 3 (+g𝑆) = (+g𝑆)
3214, 25, 30, 31, 7, 15ismhm0 41066 . 2 (𝐻 ∈ (𝑇 MndHom 𝑆) ↔ ((𝑇 ∈ Mnd ∧ 𝑆 ∈ Mnd) ∧ (𝐻 ∈ (𝑇 MgmHom 𝑆) ∧ (𝐻𝑍) = 0 )))
332, 29, 32sylanbrc 697 1 ((𝑆 ∈ Mnd ∧ 𝑇 ∈ Mnd ∧ 𝐵 = {𝑍}) → 𝐻 ∈ (𝑇 MndHom 𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 384   ∧ w3a 1036   = wceq 1480   ∈ wcel 1992  Vcvv 3191  {csn 4153   ↦ cmpt 4678  ‘cfv 5850  (class class class)co 6605  1c1 9882  #chash 13054  Basecbs 15776  +gcplusg 15857  0gc0g 16016  Mgmcmgm 17156  Mndcmnd 17210   MndHom cmhm 17249   MgmHom cmgmhm 41038 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958 This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-int 4446  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-1o 7506  df-oadd 7510  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-card 8710  df-cda 8935  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-fz 12266  df-hash 13055  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-mhm 17251  df-mgmhm 41040 This theorem is referenced by:  c0snghm  41177
 Copyright terms: Public domain W3C validator