MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  camestros Structured version   Visualization version   GIF version

Theorem camestros 2561
Description: "Camestros", one of the syllogisms of Aristotelian logic. All 𝜑 is 𝜓, no 𝜒 is 𝜓, and 𝜒 exist, therefore some 𝜒 is not 𝜑. (In Aristotelian notation, AEO-2: PaM and SeM therefore SoP.) For example, "All horses have hooves", "No humans have hooves", and humans exist, therefore "Some humans are not horses". (Contributed by David A. Wheeler, 28-Aug-2016.) (Revised by David A. Wheeler, 2-Sep-2016.)
Hypotheses
Ref Expression
camestros.maj 𝑥(𝜑𝜓)
camestros.min 𝑥(𝜒 → ¬ 𝜓)
camestros.e 𝑥𝜒
Assertion
Ref Expression
camestros 𝑥(𝜒 ∧ ¬ 𝜑)

Proof of Theorem camestros
StepHypRef Expression
1 camestros.e . 2 𝑥𝜒
2 camestros.min . . . . 5 𝑥(𝜒 → ¬ 𝜓)
32spi 2041 . . . 4 (𝜒 → ¬ 𝜓)
4 camestros.maj . . . . 5 𝑥(𝜑𝜓)
54spi 2041 . . . 4 (𝜑𝜓)
63, 5nsyl 133 . . 3 (𝜒 → ¬ 𝜑)
76ancli 571 . 2 (𝜒 → (𝜒 ∧ ¬ 𝜑))
81, 7eximii 1753 1 𝑥(𝜒 ∧ ¬ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 382  wal 1472  wex 1694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-12 2033
This theorem depends on definitions:  df-bi 195  df-an 384  df-ex 1695
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator