MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth2g Structured version   Visualization version   GIF version

Theorem canth2g 8099
Description: Cantor's theorem with the sethood requirement expressed as an antecedent. Theorem 23 of [Suppes] p. 97. (Contributed by NM, 7-Nov-2003.)
Assertion
Ref Expression
canth2g (𝐴𝑉𝐴 ≺ 𝒫 𝐴)

Proof of Theorem canth2g
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 pweq 4152 . . 3 (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴)
2 breq12 4649 . . 3 ((𝑥 = 𝐴 ∧ 𝒫 𝑥 = 𝒫 𝐴) → (𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴))
31, 2mpdan 701 . 2 (𝑥 = 𝐴 → (𝑥 ≺ 𝒫 𝑥𝐴 ≺ 𝒫 𝐴))
4 vex 3198 . . 3 𝑥 ∈ V
54canth2 8098 . 2 𝑥 ≺ 𝒫 𝑥
63, 5vtoclg 3261 1 (𝐴𝑉𝐴 ≺ 𝒫 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1481  wcel 1988  𝒫 cpw 4149   class class class wbr 4644  csdm 7939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-en 7941  df-dom 7942  df-sdom 7943
This theorem is referenced by:  2pwuninel  8100  2pwne  8101  pwfi  8246  cdalepw  9003  isfin32i  9172  fin34  9197  hsmexlem1  9233  canth3  9368  ondomon  9370  gchdomtri  9436  canthp1lem1  9459  canthp1lem2  9460  pwfseqlem5  9470  gchcdaidm  9475  gchxpidm  9476  gchpwdom  9477  gchaclem  9485  gchhar  9486  tsksdom  9563
  Copyright terms: Public domain W3C validator