MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  canth4 Structured version   Visualization version   GIF version

Theorem canth4 10072
Description: An "effective" form of Cantor's theorem canth 7114. For any function 𝐹 from the powerset of 𝐴 to 𝐴, there are two definable sets 𝐵 and 𝐶 which witness non-injectivity of 𝐹. Corollary 1.3 of [KanamoriPincus] p. 416. (Contributed by Mario Carneiro, 18-May-2015.)
Hypotheses
Ref Expression
canth4.1 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
canth4.2 𝐵 = dom 𝑊
canth4.3 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
Assertion
Ref Expression
canth4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
Distinct variable groups:   𝑥,𝑟,𝑦,𝐴   𝐵,𝑟,𝑥,𝑦   𝐷,𝑟,𝑥,𝑦   𝐹,𝑟,𝑥,𝑦   𝑉,𝑟,𝑥,𝑦   𝑦,𝐶   𝑊,𝑟,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑟)

Proof of Theorem canth4
StepHypRef Expression
1 eqid 2824 . . . . . . . 8 𝐵 = 𝐵
2 eqid 2824 . . . . . . . 8 (𝑊𝐵) = (𝑊𝐵)
31, 2pm3.2i 473 . . . . . . 7 (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))
4 canth4.1 . . . . . . . 8 𝑊 = {⟨𝑥, 𝑟⟩ ∣ ((𝑥𝐴𝑟 ⊆ (𝑥 × 𝑥)) ∧ (𝑟 We 𝑥 ∧ ∀𝑦𝑥 (𝐹‘(𝑟 “ {𝑦})) = 𝑦))}
5 elex 3515 . . . . . . . . 9 (𝐴𝑉𝐴 ∈ V)
653ad2ant1 1129 . . . . . . . 8 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐴 ∈ V)
7 simpl2 1188 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝐹:𝐷𝐴)
8 simp3 1134 . . . . . . . . . 10 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝒫 𝐴 ∩ dom card) ⊆ 𝐷)
98sselda 3970 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → 𝑥𝐷)
107, 9ffvelrnd 6855 . . . . . . . 8 (((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) ∧ 𝑥 ∈ (𝒫 𝐴 ∩ dom card)) → (𝐹𝑥) ∈ 𝐴)
11 canth4.2 . . . . . . . 8 𝐵 = dom 𝑊
124, 6, 10, 11fpwwe 10071 . . . . . . 7 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵) ↔ (𝐵 = 𝐵 ∧ (𝑊𝐵) = (𝑊𝐵))))
133, 12mpbiri 260 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊𝐵) ∧ (𝐹𝐵) ∈ 𝐵))
1413simpld 497 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵𝑊(𝑊𝐵))
154, 6fpwwelem 10070 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝑊(𝑊𝐵) ↔ ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))))
1614, 15mpbid 234 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)) ∧ ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)))
1716simpld 497 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴 ∧ (𝑊𝐵) ⊆ (𝐵 × 𝐵)))
1817simpld 497 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐵𝐴)
19 canth4.3 . . . . 5 𝐶 = ((𝑊𝐵) “ {(𝐹𝐵)})
20 cnvimass 5952 . . . . 5 ((𝑊𝐵) “ {(𝐹𝐵)}) ⊆ dom (𝑊𝐵)
2119, 20eqsstri 4004 . . . 4 𝐶 ⊆ dom (𝑊𝐵)
2217simprd 498 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) ⊆ (𝐵 × 𝐵))
23 dmss 5774 . . . . . 6 ((𝑊𝐵) ⊆ (𝐵 × 𝐵) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
2422, 23syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊𝐵) ⊆ dom (𝐵 × 𝐵))
25 dmxpid 5803 . . . . 5 dom (𝐵 × 𝐵) = 𝐵
2624, 25sseqtrdi 4020 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → dom (𝑊𝐵) ⊆ 𝐵)
2721, 26sstrid 3981 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶𝐵)
2813simprd 498 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐵) ∈ 𝐵)
2916simprd 498 . . . . . . 7 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ((𝑊𝐵) We 𝐵 ∧ ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦))
3029simpld 497 . . . . . 6 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) We 𝐵)
31 weso 5549 . . . . . 6 ((𝑊𝐵) We 𝐵 → (𝑊𝐵) Or 𝐵)
3230, 31syl 17 . . . . 5 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝑊𝐵) Or 𝐵)
33 sonr 5499 . . . . 5 (((𝑊𝐵) Or 𝐵 ∧ (𝐹𝐵) ∈ 𝐵) → ¬ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3432, 28, 33syl2anc 586 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3519eleq2i 2907 . . . . 5 ((𝐹𝐵) ∈ 𝐶 ↔ (𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}))
36 fvex 6686 . . . . . 6 (𝐹𝐵) ∈ V
3736eliniseg 5961 . . . . . 6 ((𝐹𝐵) ∈ V → ((𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}) ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵)))
3836, 37ax-mp 5 . . . . 5 ((𝐹𝐵) ∈ ((𝑊𝐵) “ {(𝐹𝐵)}) ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
3935, 38bitri 277 . . . 4 ((𝐹𝐵) ∈ 𝐶 ↔ (𝐹𝐵)(𝑊𝐵)(𝐹𝐵))
4034, 39sylnibr 331 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ¬ (𝐹𝐵) ∈ 𝐶)
4127, 28, 40ssnelpssd 4092 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → 𝐶𝐵)
42 sneq 4580 . . . . . . . 8 (𝑦 = (𝐹𝐵) → {𝑦} = {(𝐹𝐵)})
4342imaeq2d 5932 . . . . . . 7 (𝑦 = (𝐹𝐵) → ((𝑊𝐵) “ {𝑦}) = ((𝑊𝐵) “ {(𝐹𝐵)}))
4443, 19syl6eqr 2877 . . . . . 6 (𝑦 = (𝐹𝐵) → ((𝑊𝐵) “ {𝑦}) = 𝐶)
4544fveq2d 6677 . . . . 5 (𝑦 = (𝐹𝐵) → (𝐹‘((𝑊𝐵) “ {𝑦})) = (𝐹𝐶))
46 id 22 . . . . 5 (𝑦 = (𝐹𝐵) → 𝑦 = (𝐹𝐵))
4745, 46eqeq12d 2840 . . . 4 (𝑦 = (𝐹𝐵) → ((𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦 ↔ (𝐹𝐶) = (𝐹𝐵)))
4829simprd 498 . . . 4 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → ∀𝑦𝐵 (𝐹‘((𝑊𝐵) “ {𝑦})) = 𝑦)
4947, 48, 28rspcdva 3628 . . 3 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐶) = (𝐹𝐵))
5049eqcomd 2830 . 2 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐹𝐵) = (𝐹𝐶))
5118, 41, 503jca 1124 1 ((𝐴𝑉𝐹:𝐷𝐴 ∧ (𝒫 𝐴 ∩ dom card) ⊆ 𝐷) → (𝐵𝐴𝐶𝐵 ∧ (𝐹𝐵) = (𝐹𝐶)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  wral 3141  Vcvv 3497  cin 3938  wss 3939  wpss 3940  𝒫 cpw 4542  {csn 4570   cuni 4841   class class class wbr 5069  {copab 5131   Or wor 5476   We wwe 5516   × cxp 5556  ccnv 5557  dom cdm 5558  cima 5561  wf 6354  cfv 6358  cardccrd 9367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-uni 4842  df-int 4880  df-iun 4924  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-1st 7692  df-wrecs 7950  df-recs 8011  df-en 8513  df-oi 8977  df-card 9371
This theorem is referenced by:  canthnumlem  10073  canthp1lem2  10078
  Copyright terms: Public domain W3C validator