MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnff Structured version   Visualization version   GIF version

Theorem cantnff 9139
Description: The CNF function is a function from finitely supported functions from 𝐵 to 𝐴, to the ordinal exponential 𝐴o 𝐵. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnff (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))

Proof of Theorem cantnff
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6685 . . . 4 (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
21csbex 5217 . . 3 OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V
32a1i 11 . 2 ((𝜑𝑓𝑆) → OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) ∈ V)
4 eqid 2823 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
5 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
74, 5, 6cantnffval 9128 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
8 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
94, 5, 6cantnfdm 9129 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
108, 9syl5eq 2870 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
1110mpteq1d 5157 . . 3 (𝜑 → (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
127, 11eqtr4d 2861 . 2 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
135adantr 483 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ On)
146adantr 483 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵 ∈ On)
15 eqid 2823 . . . . . . . 8 OrdIso( E , (𝑥 supp ∅)) = OrdIso( E , (𝑥 supp ∅))
16 simpr 487 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝑆)
17 eqid 2823 . . . . . . . 8 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)
188, 13, 14, 15, 16, 17cantnfval 9133 . . . . . . 7 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
1918adantr 483 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
20 ovex 7191 . . . . . . . . . . 11 (𝑥 supp ∅) ∈ V
218, 13, 14, 15, 16cantnfcl 9132 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ( E We (𝑥 supp ∅) ∧ dom OrdIso( E , (𝑥 supp ∅)) ∈ ω))
2221simpld 497 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → E We (𝑥 supp ∅))
2315oien 9004 . . . . . . . . . . 11 (((𝑥 supp ∅) ∈ V ∧ E We (𝑥 supp ∅)) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2420, 22, 23sylancr 589 . . . . . . . . . 10 ((𝜑𝑥𝑆) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2524adantr 483 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
26 suppssdm 7845 . . . . . . . . . . 11 (𝑥 supp ∅) ⊆ dom 𝑥
278, 5, 6cantnfs 9131 . . . . . . . . . . . 12 (𝜑 → (𝑥𝑆 ↔ (𝑥:𝐵𝐴𝑥 finSupp ∅)))
2827simprbda 501 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → 𝑥:𝐵𝐴)
2926, 28fssdm 6532 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑥 supp ∅) ⊆ 𝐵)
30 feq3 6499 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝑥:𝐵𝐴𝑥:𝐵⟶∅))
3128, 30syl5ibcom 247 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (𝐴 = ∅ → 𝑥:𝐵⟶∅))
3231imp 409 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝑥:𝐵⟶∅)
33 f00 6563 . . . . . . . . . . . 12 (𝑥:𝐵⟶∅ ↔ (𝑥 = ∅ ∧ 𝐵 = ∅))
3432, 33sylib 220 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 = ∅ ∧ 𝐵 = ∅))
3534simprd 498 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐵 = ∅)
36 sseq0 4355 . . . . . . . . . 10 (((𝑥 supp ∅) ⊆ 𝐵𝐵 = ∅) → (𝑥 supp ∅) = ∅)
3729, 35, 36syl2an2r 683 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 supp ∅) = ∅)
3825, 37breqtrd 5094 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅)
39 en0 8574 . . . . . . . 8 (dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅ ↔ dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4038, 39sylib 220 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4140fveq2d 6676 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))) = (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅))
42 0ex 5213 . . . . . . 7 ∅ ∈ V
4317seqom0g 8094 . . . . . . 7 (∅ ∈ V → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
4442, 43mp1i 13 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·o (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +o 𝑧)), ∅)‘∅) = ∅)
4519, 41, 443eqtrd 2862 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = ∅)
46 el1o 8126 . . . . 5 (((𝐴 CNF 𝐵)‘𝑥) ∈ 1o ↔ ((𝐴 CNF 𝐵)‘𝑥) = ∅)
4745, 46sylibr 236 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ 1o)
4835oveq2d 7174 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = (𝐴o ∅))
4913adantr 483 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐴 ∈ On)
50 oe0 8149 . . . . . 6 (𝐴 ∈ On → (𝐴o ∅) = 1o)
5149, 50syl 17 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o ∅) = 1o)
5248, 51eqtrd 2858 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴o 𝐵) = 1o)
5347, 52eleqtrrd 2918 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
5413adantr 483 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5514adantr 483 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On)
5616adantr 483 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝑥𝑆)
57 on0eln0 6248 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
5813, 57syl 17 . . . . 5 ((𝜑𝑥𝑆) → (∅ ∈ 𝐴𝐴 ≠ ∅))
5958biimpar 480 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
6029adantr 483 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → (𝑥 supp ∅) ⊆ 𝐵)
618, 54, 55, 56, 59, 55, 60cantnflt2 9138 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
6253, 61pm2.61dane 3106 . 2 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴o 𝐵))
633, 12, 62fmpt2d 6889 1 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴o 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  {crab 3144  Vcvv 3496  csb 3885  wss 3938  c0 4293   class class class wbr 5068  cmpt 5148   E cep 5466   We wwe 5515  dom cdm 5557  Oncon0 6193  wf 6353  cfv 6357  (class class class)co 7158  cmpo 7160  ωcom 7582   supp csupp 7832  seqωcseqom 8085  1oc1o 8097   +o coa 8101   ·o comu 8102  o coe 8103  m cmap 8408  cen 8508   finSupp cfsupp 8835  OrdIsocoi 8975   CNF ccnf 9126
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-seqom 8086  df-1o 8104  df-2o 8105  df-oadd 8108  df-omul 8109  df-oexp 8110  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-cnf 9127
This theorem is referenced by:  cantnfp1  9146  cantnflem1  9154  cantnflem3  9156  cantnflem4  9157  cantnf  9158
  Copyright terms: Public domain W3C validator