MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnff Structured version   Visualization version   GIF version

Theorem cantnff 8516
Description: The CNF function is a function from finitely supported functions from 𝐵 to 𝐴, to the ordinal exponential 𝐴𝑜 𝐵. (Contributed by Mario Carneiro, 28-May-2015.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
Assertion
Ref Expression
cantnff (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵))

Proof of Theorem cantnff
Dummy variables 𝑓 𝑔 𝑘 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fvex 6160 . . . 4 (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V
21csbex 4758 . . 3 OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V
32a1i 11 . 2 ((𝜑𝑓𝑆) → OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom ) ∈ V)
4 eqid 2626 . . . 4 {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅}
5 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
6 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
74, 5, 6cantnffval 8505 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
8 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
94, 5, 6cantnfdm 8506 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
108, 9syl5eq 2672 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅})
1110mpteq1d 4703 . . 3 (𝜑 → (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )) = (𝑓 ∈ {𝑔 ∈ (𝐴𝑚 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
127, 11eqtr4d 2663 . 2 (𝜑 → (𝐴 CNF 𝐵) = (𝑓𝑆OrdIso( E , (𝑓 supp ∅)) / (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (𝑘)) ·𝑜 (𝑓‘(𝑘))) +𝑜 𝑧)), ∅)‘dom )))
135adantr 481 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐴 ∈ On)
146adantr 481 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝐵 ∈ On)
15 eqid 2626 . . . . . . . 8 OrdIso( E , (𝑥 supp ∅)) = OrdIso( E , (𝑥 supp ∅))
16 simpr 477 . . . . . . . 8 ((𝜑𝑥𝑆) → 𝑥𝑆)
17 eqid 2626 . . . . . . . 8 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·𝑜 (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·𝑜 (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)
188, 13, 14, 15, 16, 17cantnfval 8510 . . . . . . 7 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·𝑜 (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
1918adantr 481 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·𝑜 (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))))
20 ovex 6633 . . . . . . . . . . 11 (𝑥 supp ∅) ∈ V
218, 13, 14, 15, 16cantnfcl 8509 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → ( E We (𝑥 supp ∅) ∧ dom OrdIso( E , (𝑥 supp ∅)) ∈ ω))
2221simpld 475 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → E We (𝑥 supp ∅))
2315oien 8388 . . . . . . . . . . 11 (((𝑥 supp ∅) ∈ V ∧ E We (𝑥 supp ∅)) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2420, 22, 23sylancr 694 . . . . . . . . . 10 ((𝜑𝑥𝑆) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
2524adantr 481 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ (𝑥 supp ∅))
26 suppssdm 7254 . . . . . . . . . . 11 (𝑥 supp ∅) ⊆ dom 𝑥
278, 5, 6cantnfs 8508 . . . . . . . . . . . . 13 (𝜑 → (𝑥𝑆 ↔ (𝑥:𝐵𝐴𝑥 finSupp ∅)))
2827simprbda 652 . . . . . . . . . . . 12 ((𝜑𝑥𝑆) → 𝑥:𝐵𝐴)
29 fdm 6010 . . . . . . . . . . . 12 (𝑥:𝐵𝐴 → dom 𝑥 = 𝐵)
3028, 29syl 17 . . . . . . . . . . 11 ((𝜑𝑥𝑆) → dom 𝑥 = 𝐵)
3126, 30syl5sseq 3637 . . . . . . . . . 10 ((𝜑𝑥𝑆) → (𝑥 supp ∅) ⊆ 𝐵)
32 feq3 5987 . . . . . . . . . . . . . 14 (𝐴 = ∅ → (𝑥:𝐵𝐴𝑥:𝐵⟶∅))
3328, 32syl5ibcom 235 . . . . . . . . . . . . 13 ((𝜑𝑥𝑆) → (𝐴 = ∅ → 𝑥:𝐵⟶∅))
3433imp 445 . . . . . . . . . . . 12 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝑥:𝐵⟶∅)
35 f00 6046 . . . . . . . . . . . 12 (𝑥:𝐵⟶∅ ↔ (𝑥 = ∅ ∧ 𝐵 = ∅))
3634, 35sylib 208 . . . . . . . . . . 11 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 = ∅ ∧ 𝐵 = ∅))
3736simprd 479 . . . . . . . . . 10 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐵 = ∅)
38 sseq0 3952 . . . . . . . . . 10 (((𝑥 supp ∅) ⊆ 𝐵𝐵 = ∅) → (𝑥 supp ∅) = ∅)
3931, 37, 38syl2an2r 875 . . . . . . . . 9 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝑥 supp ∅) = ∅)
4025, 39breqtrd 4644 . . . . . . . 8 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅)
41 en0 7964 . . . . . . . 8 (dom OrdIso( E , (𝑥 supp ∅)) ≈ ∅ ↔ dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4240, 41sylib 208 . . . . . . 7 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → dom OrdIso( E , (𝑥 supp ∅)) = ∅)
4342fveq2d 6154 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·𝑜 (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘dom OrdIso( E , (𝑥 supp ∅))) = (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·𝑜 (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘∅))
44 0ex 4755 . . . . . . 7 ∅ ∈ V
4517seqom0g 7497 . . . . . . 7 (∅ ∈ V → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·𝑜 (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅)
4644, 45mp1i 13 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴𝑜 (OrdIso( E , (𝑥 supp ∅))‘𝑘)) ·𝑜 (𝑥‘(OrdIso( E , (𝑥 supp ∅))‘𝑘))) +𝑜 𝑧)), ∅)‘∅) = ∅)
4719, 43, 463eqtrd 2664 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) = ∅)
48 el1o 7525 . . . . 5 (((𝐴 CNF 𝐵)‘𝑥) ∈ 1𝑜 ↔ ((𝐴 CNF 𝐵)‘𝑥) = ∅)
4947, 48sylibr 224 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ 1𝑜)
5037oveq2d 6621 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴𝑜 𝐵) = (𝐴𝑜 ∅))
5113adantr 481 . . . . . 6 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → 𝐴 ∈ On)
52 oe0 7548 . . . . . 6 (𝐴 ∈ On → (𝐴𝑜 ∅) = 1𝑜)
5351, 52syl 17 . . . . 5 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴𝑜 ∅) = 1𝑜)
5450, 53eqtrd 2660 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → (𝐴𝑜 𝐵) = 1𝑜)
5549, 54eleqtrrd 2707 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 = ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴𝑜 𝐵))
5613adantr 481 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐴 ∈ On)
5714adantr 481 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝐵 ∈ On)
5816adantr 481 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → 𝑥𝑆)
59 on0eln0 5742 . . . . . 6 (𝐴 ∈ On → (∅ ∈ 𝐴𝐴 ≠ ∅))
6013, 59syl 17 . . . . 5 ((𝜑𝑥𝑆) → (∅ ∈ 𝐴𝐴 ≠ ∅))
6160biimpar 502 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ∅ ∈ 𝐴)
6231adantr 481 . . . 4 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → (𝑥 supp ∅) ⊆ 𝐵)
638, 56, 57, 58, 61, 57, 62cantnflt2 8515 . . 3 (((𝜑𝑥𝑆) ∧ 𝐴 ≠ ∅) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴𝑜 𝐵))
6455, 63pm2.61dane 2883 . 2 ((𝜑𝑥𝑆) → ((𝐴 CNF 𝐵)‘𝑥) ∈ (𝐴𝑜 𝐵))
653, 12, 64fmpt2d 6349 1 (𝜑 → (𝐴 CNF 𝐵):𝑆⟶(𝐴𝑜 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1992  wne 2796  {crab 2916  Vcvv 3191  csb 3519  wss 3560  c0 3896   class class class wbr 4618  cmpt 4678   E cep 4988   We wwe 5037  dom cdm 5079  Oncon0 5685  wf 5846  cfv 5850  (class class class)co 6605  cmpt2 6607  ωcom 7013   supp csupp 7241  seq𝜔cseqom 7488  1𝑜c1o 7499   +𝑜 coa 7503   ·𝑜 comu 7504  𝑜 coe 7505  𝑚 cmap 7803  cen 7897   finSupp cfsupp 8220  OrdIsocoi 8359   CNF ccnf 8503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-fal 1486  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-se 5039  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-isom 5859  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-supp 7242  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-seqom 7489  df-1o 7506  df-2o 7507  df-oadd 7510  df-omul 7511  df-oexp 7512  df-er 7688  df-map 7805  df-en 7901  df-dom 7902  df-sdom 7903  df-fin 7904  df-fsupp 8221  df-oi 8360  df-cnf 8504
This theorem is referenced by:  cantnfp1  8523  cantnflem1  8531  cantnflem3  8533  cantnflem4  8534  cantnf  8535
  Copyright terms: Public domain W3C validator